【題目】在平面直角坐標系中,在圖中描出A(﹣2,﹣2),B(﹣8,6),C(2,1).請問三角形ABC的形狀并求出三角形的面積.
科目:初中數(shù)學 來源: 題型:
【題目】為加大環(huán)境保護力度,某市在郊區(qū)新建了、兩個垃圾處理廠來處理甲、乙兩個垃圾中轉(zhuǎn)站的垃圾.已知甲中轉(zhuǎn)站每日要輸出100噸垃圾,乙中轉(zhuǎn)站每日要輸出80噸垃圾,垃圾處理廠日處理垃圾量為70噸,垃圾處理廠日處理垃圾量為110噸.甲、乙兩中轉(zhuǎn)站運往、兩處理廠的垃圾量和運費如下表.
垃圾量(噸) | 運費(元/噸) | |||
甲中轉(zhuǎn)站 | 乙中轉(zhuǎn)站 | 甲中轉(zhuǎn)站 | 乙中轉(zhuǎn)站 | |
垃圾處理廠 | ______ | 240 | 180 | |
垃圾處理廠 | ______ | 250 | 160 |
(1)設(shè)甲中轉(zhuǎn)站運往垃圾處理廠的垃圾量為噸,根據(jù)信息填表.
(2)設(shè)總運費為元,求總運費(元)關(guān)于(噸)的函數(shù)關(guān)系式,并寫出的取值范圍.
(3)當甲、乙兩中轉(zhuǎn)站各運往、兩處理廠多少噸垃圾時,總運費最?最省的總運費是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校在宣傳“民族團結(jié)”活動中,采用四種宣傳形式:A.器樂,B.舞蹈,C.朗誦,D.唱歌.每名學生從中選擇并且只能選擇一種最喜歡的,學校就宣傳形式對學生進行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.
請結(jié)合圖中所給信息,解析下列問題:
(1)本次調(diào)查的學生共有 人;
(2)補全條形統(tǒng)計圖;
(3)該校共有1200名學生,請估計選擇“唱歌”的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線過點A(﹣3,0),B(﹣2,3),C(0,3),其頂點為D.
(1)求拋物線的解析式;
(2)設(shè)點M(1,m),當MB+MD的值最小時,求m的值;
(3)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值;
(4)若拋物線的對稱軸與直線AC相交于點N,E為直線AC上任意一點,過點E作EF∥ND交拋物線于點F,以N,D,E,F為頂點的四邊形能否為平行四邊形?若能,求點E的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:∠MON=80°,OE平分∠MON,點A、B、C分別是射線OM、OE、ON上的動點(A、B、C不與點O 重合),連接AC交射線OE于點D.設(shè)∠OAC=x°.
(1)如圖1,若AB∥ON,則:①∠ABO的度數(shù)是 ;
②如圖2,當∠BAD=∠ABD時,試求x的值(要說明理由);
(2)如圖3,若AB⊥OM,則是否存在這樣的X的值,使得△ADB中有兩個相等的角?若存在,直接寫出x的值;若不存在,說明理由.(自己畫圖)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l1:分別與x軸、y軸交于點B、C,且與直線l2:交于點A.
(1)求出點A的坐標
(2)若D是線段OA上的點,且△COD的面積為12,求直線CD的解析式
(3)在(2)的條件下,設(shè)P是射線CD上的點,在平面內(nèi)是否存在點Q,使以O(shè)、C、P、Q為頂點的四邊形是菱形?若存在,直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,對角線BD平分∠ABC,過點A作AE∥BD,交CD的延長線于點E,過點E作EF⊥BC,交BC延長線于點F.
(1)求證:四邊形ABCD是菱形;
(2)若∠ABC=45°,BC=2,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過點(3,2)。
(1)求這個二次函數(shù)的關(guān)系式;
(2)畫出它的圖象,并指出圖象的頂點坐標;
(3)當x>0時,求使y≥2的x的取值范圍。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠C=90°,AC=4,矩形DEFG的頂點D、G分別在AC、BC上,邊EF在AB上.
(1)求證:△AED∽△DCG;
(2)若矩形DEFG的面積為4,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com