【題目】已知某市2013年企業(yè)用水量x(噸)與該月應(yīng)交的水費y(元)之間的函數(shù)關(guān)系如圖所示.
(1)當(dāng)x≥50時,求y關(guān)于x的函數(shù)關(guān)系式;
(2)若某企業(yè)2013年10月份的水費為620元,求該企業(yè)2013年10月份的用水量;
(3)為貫徹省委“五水共治”發(fā)展戰(zhàn)略,鼓勵企業(yè)節(jié)約用水,該市自2014年1月開始對月用水量超過80噸的企業(yè)加收污水處理費,規(guī)定:若企業(yè)月用水量x超過80噸,則除按2013年收費標準收取水費外,超過80噸部分每噸另加收元,若某企業(yè)2014年3月份的水費和污水處理費共600元,求這個企業(yè)該月的用水量.
【答案】(1)y=kx+b(2)120噸(3)100噸
【解析】
試題分析:(1)設(shè)y關(guān)于x的函數(shù)關(guān)系式y(tǒng)=kx+b,代入(50,200)、(60,260)兩點求得解析式即可;
(2)把y=620代入(1)求得答案即可;
(3)利用水費+污水處理費=600元,列出方程解決問題.
解:(1)設(shè)y關(guān)于x的函數(shù)關(guān)系式y(tǒng)=kx+b,
∵直線y=kx+b經(jīng)過點(50,200),(60,260)
∴
解得
∴y關(guān)于x的函數(shù)關(guān)系式是y=6x﹣100;
(2)由圖可知,當(dāng)y=620時,x>50,
∴6x﹣100=620,
解得x=120.
答:該企業(yè)2013年10月份的用水量為120噸.
(3)由題意得6x﹣100+(x﹣80)=600,
化簡得x2+40x﹣14000=0
解得:x1=100,x2=﹣140(不合題意,舍去).
答:這個企業(yè)2014年3月份的用水量是100噸.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點P,OF∥BC,交AC于點E,交PC于點F,連接AF.
(1)求證:AF是⊙O的切線;
(2)已知⊙O的半徑為4,AF=3,求線段AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運算:①x2+x4=x6 ②2x+3y=5xy ③x6÷x3=x3 ④(x3)2=x6,其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標系中,拋物線經(jīng)過點A(0,4),B(1,0),C(5,0),其對稱軸與x軸相交于點M.
(1)求拋物線的解析式和對稱軸;
(2)在拋物線的對稱軸上是否存在一點P,使△PAB的周長最?若存在,請求出點P的坐標;若不存在,請說明理由;
(3)連接AC,在直線AC的下方的拋物線上,是否存在一點N,使△NAC的面積最大?若存在,請求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式能用平方差公式計算的是( 。
A. (3a+b)(a﹣b) B. (3a+b)(﹣3a﹣b) C. (﹣3a﹣b)(﹣3a+b) D. (﹣3a+b)(3a﹣b)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長為1的小正方形組成的網(wǎng)格中,把一個點先沿水平方向平移丨a丨格(當(dāng)a為正數(shù)時,表示向右平移;當(dāng)a為負數(shù)時,表示向左平移),再沿豎直方向平移丨b|格(當(dāng)b為正數(shù)時,表示向上平移;當(dāng)b為負數(shù)時,表示向下平移),得到一個新的點,我們把這個過程記為(a,b)例如在圖1中.從A到B記為:A→B(+1,+3)從c到D記為:C→D(+3,一3),請回答下列問題:
(1)如圖1,若點A的運動路線為:A→B→D→A,請計算點A運動過的總路程;
(2)若點A運動的路線依次為:A→M(+2,+3)A→N(+1,―1),N→P
(-2,+2)P→Q(+4,—4)請你依次在圖2上標出點M,N,P,Q的位置.
(3)在圖2中,若點A經(jīng)過(m,n)得到點E,點E再經(jīng)過(p、,q)后得到Q,則m與p滿足的數(shù)量關(guān)系是___________;n與q滿足的數(shù)量關(guān)系是________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com