【題目】如圖,等邊三角形ABC的邊長為cm,在AC,BC邊上各取一點E,F,使得AE=CF,連接AF,BE相交于點P.(1)則∠APB=______度;(2)當點E從點A運動到點C時,則動點P經過的路徑長為________cm.
【答案】120
【解析】
(1)證明△ABE≌△CAF,借用外角即可以得到答案;
(2)由∠APB=120°可知點P的運動路徑是一段弧,根據(jù)圓周角定理可得∠AOB=120°,過圓心O做OG⊥AB,由AB=可得OA=1,然后利用弧長公式計算即可.
解:(1)∵△ABC為等邊三角形,
∴AB=AC,∠C=∠CAB=60°,
又∵AE=CF,
在△ABE和△CAF中,,
∴△ABE≌△CAF(SAS),
∴∠ABE=∠CAF,
又∵∠APE=∠BPF=∠ABP+∠BAP,
∴∠APE=∠BAP+∠CAF=60°,
∴∠APB=180°∠APE=120°;
(2)由∠APB=120°可知點P的運動路徑是一段弧,如圖,
∵∠APB=120°,
所以劣弧AB所對的圓周角為60°,
∴∠AOB=120°,
過圓心O做OG⊥AB,則∠AOG=30°,
又∵AB=,
∴AG=,
∴OA=,
∴動點P經過的路徑長l=.
故答案為:(1)120;(2).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=12米,BC=24米,動點P從點A開始沿邊AB向B以2米/秒的速度運動(不與點B重合),動點Q從點B開始沿BC向C以4米/秒的速度運動(不與點C重合).如果P、Q分別從A、B同時出發(fā),設運動時間為x秒,四邊形APQC的面積為y平方米.
(1)求y與x之間的函數(shù)關系式,直接寫出自變量x的取值范圍;
(2)求當x為多少時,y有最小值,最小值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AC與BD交于點E,點E是BD的中點,延長CD到點F,使DF=CD,連接AF,
(1)求證:AE=CE;
(2)求證:四邊形ABDF是平行四邊形;
(3)若AB=2,AF=4,∠F=30°,則四邊形ABCF的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形OABC的頂點O是坐標原點,點A在第一象限,點C在第四象限,點B在x軸的正半軸上.∠OAB=90°且OA=AB,OB,OC的長分別是二元一次方程組的解(OB>OC).
(1)求點A和點B的坐標;
(2)點P是線段OB上的一個動點(點P不與點O,B重合),過點P的直線l與y軸平行,直線l交邊OA或邊AB于點Q,交邊OC或邊BC于點R.設點P的橫坐標為t,線段QR的長度為m.已知t=4時,直線l恰好過點C.
①當0<t<3時,求m關于t的函數(shù)關系式;
②當m=時,求點P的橫坐標t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點,連接OG并延長交⊙O于點D,連接BD交AE于點F,延長AE至點C,使得FC=BC,連接BC.
(1)求證:BC是⊙O的切線;
(2)⊙O的半徑為5,tanA=,求FD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點G,OC到點E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉α角(0°<α<360°)得到正方形OE′F′G′,如圖2.
①在旋轉過程中,當∠OAG′是直角時,求α的度數(shù);
②若正方形ABCD的邊長為1,在旋轉過程中,求AF′長的最大值和此時α的度數(shù),直接寫出結果不必說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點為A,BC交⊙O于點D,點E是AC的中點.
(1)試判斷直線DE與⊙O的位置關系,并說明理由;
(2)若⊙O的半徑為2,∠B=50°,AC=6,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O是坐標原點,菱形OABC的頂點A的坐標為,頂點C在x軸的正半軸上,則的角平分線所在直線的函數(shù)關系式為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com