【題目】如圖所給圖案,可看作是基本圖形“______”經(jīng)______次平移得到的,也可看作是基本圖形“______”繞中心旋轉(zhuǎn)______次得到,還可看作是基本圖形“______”經(jīng)軸對(duì)稱(chēng)得到整個(gè)圖案的.

【答案】正方形 AEOH 3 3 矩形

【解析】

根據(jù)平移的性質(zhì),正方形AEOH向右平移,再向下平移,再向左平移,形成正方形ABCD.根據(jù)旋轉(zhuǎn)的性質(zhì),AOB、AODDOC、COB等繞O點(diǎn)旋轉(zhuǎn),也可形成正方形ABCD.根據(jù)軸對(duì)稱(chēng)的性質(zhì),矩形沿GH所在的直線做軸對(duì)稱(chēng)變換也可以得到整個(gè)圖案.

解:正方形ABCD可看作是由圖形小正方形AEOH經(jīng)三次平移得到的,也可看作是由圖形AOB(答案不唯一)繞點(diǎn)O旋轉(zhuǎn)三次得到.也可以看作是矩形沿GH所在的直線做軸對(duì)稱(chēng)變換也可以得到整個(gè)圖案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)為了保護(hù)和改善生態(tài)環(huán)境,決定從2014年起進(jìn)行退耕還林,把易造成水土流失的坡耕地變?yōu)榱值兀⒊雠_(tái)了一項(xiàng)激勵(lì)措施:在退耕還林的過(guò)程中,每一年新增林地面積達(dá)到10畝的農(nóng)戶,當(dāng)年都可得到生活補(bǔ)貼1500元,且每超出一畝,政府還給予每畝a元的獎(jiǎng)勵(lì).另外,經(jīng)退耕還林后的林地從下一年起,平均每畝每年可有110元的種樹(shù)收入.下表是某農(nóng)戶在頭兩年通過(guò)退耕還林每年獲得的總收入(年總收入=生活補(bǔ)貼費(fèi)+政府獎(jiǎng)勵(lì)費(fèi)+種樹(shù)收入)情況:

年份

新增林地畝數(shù)

年總收入

2014

20

2400

2015

26

4300

1)試根據(jù)以上提供的資料求a的值;

2)如果該農(nóng)戶計(jì)劃在2016年總收入達(dá)到10000元,則該農(nóng)戶在2016年應(yīng)新增林地約多少畝?(結(jié)果保留整數(shù))

3)從2015年起,如果該農(nóng)戶每年新增林地的畝數(shù)均能比前一年按相同的增長(zhǎng)率增長(zhǎng),那么該農(nóng)戶在2017年新增林地多少畝(結(jié)果保留兩位小數(shù))?2017年該農(nóng)戶通過(guò)退耕還林獲得的年總收入將達(dá)到多少元(結(jié)果保留一位小數(shù))?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上點(diǎn)A表示數(shù)a,點(diǎn)B表示數(shù)b,點(diǎn)C表示數(shù)c.b是最小的正整數(shù),且a、b滿足|a+2|+(c﹣7)2=0

(1)填空:a=   ,b=   

(2)點(diǎn)A、B、C開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長(zhǎng)度和4個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過(guò)后,若點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)BC之間的距離表示為BC.則BC=   .(用含t的代數(shù)式表示)

(3)請(qǐng)問(wèn):|2AB﹣3BC|的值是否隨著時(shí)間t的變化而改變?若改變,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB,CD相交于點(diǎn)O,OE平分∠BOC,∠COF90°.

1)若∠BOE65°,求∠AOF的度數(shù);

2)若∠BOD:∠BOE12,求∠AOF的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=kx+bx軸于點(diǎn)A(﹣1,0),交y軸于點(diǎn)B(0,4),過(guò)AB兩點(diǎn)的拋物線交x軸于另一點(diǎn)C

(1)求直線AB的解析式;

(2)在該拋物線的對(duì)稱(chēng)軸上有一動(dòng)點(diǎn)P,連接PA、PB,若測(cè)得PA+PB的最小值為5,求此時(shí)拋物線的解析式及點(diǎn)P的坐標(biāo);

(3)在(2)條件下,在拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)Q,使ABQ是等腰三角形?若存在,直接寫(xiě)出符合條件的所有Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在長(zhǎng)方形中,,,現(xiàn)將長(zhǎng)方形向右平移,再向下平移后到長(zhǎng)方形的位置.

1)如圖,用的代數(shù)式表示長(zhǎng)方形與長(zhǎng)方形的重疊部分的面積,這時(shí)應(yīng)滿足怎樣的條件?

2)如圖,用的代數(shù)式表示六邊形的面積;

3)當(dāng)這兩個(gè)長(zhǎng)方形沒(méi)有重疊部分時(shí),第(2)小題的結(jié)論是否改變,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,過(guò)點(diǎn)的直線邊上一點(diǎn),過(guò)點(diǎn),交直線,垂足為,連接.

1)求證:;

2)當(dāng)中點(diǎn)時(shí),四邊形是什么特殊四邊形?說(shuō)明你的理由;

3)當(dāng)中點(diǎn)時(shí),則當(dāng)的大小滿足什么條件時(shí),四邊形是正方形?請(qǐng)直接寫(xiě)出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OD是∠BOC的平分線,OE是∠AOC的平分線,∠AOB︰∠BOC=32,若∠BOE=13°,求∠DOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在甲村至乙村間有一條公路,在C處需要爆破,已知點(diǎn)C與公路上的?空A的距離為300米,與公路上的另一?空B的距離為400米,且CACB,如圖所示.為了安全起見(jiàn),爆破點(diǎn)C周?chē)霃?/span>250米范圍內(nèi)不得進(jìn)入,問(wèn)在進(jìn)行爆破時(shí),公路AB段是否有危險(xiǎn)?請(qǐng)用你學(xué)過(guò)的知識(shí)加以解答.

查看答案和解析>>

同步練習(xí)冊(cè)答案