【題目】如圖,在正方形ABCD中,點(diǎn)C1在邊BC上,將C1CD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到A1AD.A1F平分∠BA1C1,交BD于點(diǎn)F,過(guò)點(diǎn)FFEA1C1,垂足為E,當(dāng)A1E=3,C1E=2時(shí),則BD的長(zhǎng)為_____

【答案】

【解析】

連接C1F,作FH⊥ABH,F(xiàn)G⊥BCG,如圖,

∵四邊形ABCD為正方形,

∴FB平分∠HBG,

A1F平分∠BA1C1,

∴C1F平分∠GC1E,

∴FH=FG=FE,

易得△A1HF≌△A1EF,△C1GF≌△C1EF,四邊形BGFH為正方形,

∴A1H=A1E=3,C1G=C1E=2,

設(shè)BG=BH=x,

Rt△A1BC1,(2+x)+(3+x)=52,解得x1=1,x2=6(舍去),

∴A1B=4,BC1=3,

∵△C1CD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90得到△A1AD,

∴A1A=C1C,

AB=BC,

∴4CC1=3+C1C,解得C1C=,

∴BC=3+=,

∴BD=BC=.

故答案為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),,且,連接,點(diǎn)的中點(diǎn),連接,則__________,___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC是等邊三角形,D是邊AC的中點(diǎn),連接BDECBC于點(diǎn)C,CEBD.求證:△ADE是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)y=-x+分別與x軸、y軸交于B、C兩點(diǎn),點(diǎn)A在x軸上,ACB=90°,拋物線(xiàn)=ax2+bx+經(jīng)過(guò)A、B兩點(diǎn).

(1)求A、B兩點(diǎn)的坐標(biāo);

(2)求拋物線(xiàn)的解析式;

(3)點(diǎn)M是直線(xiàn)BC上方拋物線(xiàn)上的一點(diǎn),過(guò)點(diǎn)M從作MHBC于點(diǎn)H,作軸MDy軸交BC于點(diǎn)D,求DMH周長(zhǎng)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某高樓OB上有一旗桿CB,我校數(shù)學(xué)興趣小組的同學(xué)準(zhǔn)備利用所學(xué)的三角函數(shù)知識(shí)估測(cè)該高樓的高度,由于有其他建筑物遮擋視線(xiàn)不便測(cè)量,所以測(cè)量員沿坡度i=1:的山坡從坡腳的A處前行50米到達(dá)P處,測(cè)得旗桿頂部C的仰角為45°,旗桿底部B的仰角為37°(測(cè)量員的身高忽略不計(jì)),已知旗桿高BC=15米,則該高樓OB的高度為( 。┟祝▍⒖紨(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

A. 45 B. 60 C. 70 D. 85

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)正整數(shù),由N個(gè)數(shù)字組成,若它的第一位數(shù)可以被1整除,它的前兩位數(shù)可以被2整除,前三位數(shù)可以被3整除,,一直到前N位數(shù)可以被N整除,則這樣的數(shù)叫做精巧數(shù).如:123的第一位數(shù)“1”可以被1整除,前兩位數(shù)“12”可以被2整除,“123”可以被3整除,則123是一個(gè)精巧數(shù)”.

(1)若四位數(shù)是一個(gè)精巧數(shù),求k的值;

(2)若一個(gè)三位精巧數(shù)各位數(shù)字之和為一個(gè)完全平方數(shù),請(qǐng)求出所有滿(mǎn)足條件的三位精巧數(shù)”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,AB=AC,∠BAC=54°,∠BAC的平分線(xiàn)與AB的垂直平分線(xiàn)交于點(diǎn)O,將∠C沿EFEBC上,FAC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠OEC的度數(shù)是(

A.128°B.118°C.108°D.98°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】菱形ABCD的邊長(zhǎng)為3,∠BAD=60°.

(1)連接AC,過(guò)點(diǎn)DDEAB于點(diǎn)EDFBCAC于點(diǎn)F,DEDF于點(diǎn)M、N

依題意補(bǔ)全圖1;

MN的長(zhǎng)

(2)如圖2,(1)中∠EDF以點(diǎn)D為中心順時(shí)針旋轉(zhuǎn)45°,其兩邊DE′、DF分別與直線(xiàn)AB、BC相交于點(diǎn)QP,連接QP請(qǐng)寫(xiě)出求DPQ的面積的思路.可以不寫(xiě)出計(jì)算結(jié)果

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知⊙O中,AB為弦,直線(xiàn)PO交⊙O于點(diǎn)M、N,POABC,過(guò)點(diǎn)B作直徑BD,連接AD、BM、AP.

(1)求證:PMAD;

(2)若∠BAP=2M,求證:PA是⊙O的切線(xiàn);

(3)若AD=6,tanM=,求⊙O的直徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案