【題目】我國古代對于利用方程解決實(shí)際問題早有研究,《九章算術(shù)》中提到這么一道“以繩測井”的題:以繩測井,若將繩三折測之,繩多四尺:若將繩四折測之,繩多一尺.繩長、井深各幾何?

這道題大致意思是:用繩子測量水井深度,如果將繩子折成三等份,那么每等份井外余繩四尺:如果將繩子折成四等份,那么每等份井外余繩一尺.問繩長和井深各多少尺?若設(shè)井深為x尺,則求解井深的方程正確的是(  )

A.3x+4)=4x+1B.3x+44x+1

C.x+4x+1D.x4x1

【答案】A

【解析】

設(shè)井深為x尺,則根據(jù)將繩三折測之,繩多四尺;繩四折測之,繩多一尺,即可列出方程.

解:根據(jù)將繩三折測之,繩多四尺,則繩長為:3x+4),根據(jù)繩四折測之,繩多一尺,則繩長為:4x+1),

3x+4)=4x+1).

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,P點(diǎn)從點(diǎn)A開始以2厘米/秒的速度沿ABC的方向移動,點(diǎn)Q從點(diǎn)C開始以1厘米/秒的速度沿CAB的方向移動,在直角三角形ABC中,∠A90°,若AB16厘米,AC12厘米,BC20厘米,如果PQ同時出發(fā),用t(秒)表示移動時間,那么:

1)如圖1,若P在線段AB上運(yùn)動,Q在線段CA上運(yùn)動,試求出t為何值時,QAAP

2)如圖2,點(diǎn)QCA上運(yùn)動,試求出t為何值時,三角形QAB的面積等于三角形ABC面積的;

3)如圖3,當(dāng)P點(diǎn)到達(dá)C點(diǎn)時,PQ兩點(diǎn)都停止運(yùn)動,試求當(dāng)t為何值時,線段AQ的長度等于線段BP的長的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給定一列分式:,,,,(其中.

1)把任意一個分式除以前面一個分式,你發(fā)現(xiàn)了什么規(guī)律?

2)根據(jù)你發(fā)現(xiàn)的規(guī)律,試寫出給定的那列分式中的第7個分式和第8個分式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國南宋著名數(shù)學(xué)家秦九韶的著作《數(shù)書九章》里記載有這樣一道題:問有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?這道題講的是:有一塊三角形沙田,三條邊長分別為5里,12里,13里,問這塊沙田面積有多大?題中是我國市制長度單位,1=0.5千米,則該沙田的面積為________________平方千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校想了解學(xué)生每周的課外閱讀時間情況,隨機(jī)調(diào)查了部分學(xué)生,對學(xué)生每周的課外閱讀時間x單位:小時進(jìn)行分組整理,并繪制了如圖所示的不完整的頻數(shù)分別直方圖和扇形統(tǒng)計(jì)圖:

根據(jù)圖中提供的信息,解答下列問題:

1補(bǔ)全頻數(shù)分布直方圖

2求扇形統(tǒng)計(jì)圖中m的值和E組對應(yīng)的圓心角度數(shù)

3請估計(jì)該校3000名學(xué)生中每周的課外閱讀時間不小于6小時的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,這是某居民小區(qū)的一塊邊長為2a米的正方形空地,為了美化小區(qū)環(huán)境,準(zhǔn)備在中間修建一個最大的圓形噴泉,剩下的部分用來種草(見陰影部分).(本題中π3.14

1)請用含a的式子表示種草的面積.

2)如果a10,且建造噴泉每平方米所需資金為200元,種草的地方每平方米所需100元那么美化這塊空地共需資金多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠DAC是△ABC的一個外角.

實(shí)驗(yàn)與操作:根據(jù)要求進(jìn)行尺規(guī)作圖,并在圖中標(biāo)明相應(yīng)字母(保留作圖痕跡,不寫作法)

(1)作∠DAC的平分線AM;

(2)作線段AC的垂直平分線,與AM交于點(diǎn)F,與BC邊交于點(diǎn)E,連接AE、CF

探究與猜想:若∠BAE=36°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為4,點(diǎn)PAB邊上的一個動點(diǎn),連接CP,過點(diǎn)PPC的垂線交AD于點(diǎn)E,以PE為邊作正方形PEFG,頂點(diǎn)G在線段PC上. 對角線EG、FP相交于點(diǎn)O.

(1)若AP=3,求AE的長;

(2)連接AC,判斷點(diǎn)O是否在AC上,并說明理由;

(3)在點(diǎn)P從點(diǎn)A到點(diǎn)B的運(yùn)動過程中,正方形PEFG也隨之運(yùn)動,求DE的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸的單位長度為1

1)如果點(diǎn)AD表示的數(shù)互為相反數(shù),那么點(diǎn)B表示的數(shù)是多少?

2)當(dāng)點(diǎn)B為原點(diǎn)時,若存在一點(diǎn)MA點(diǎn)的距離是點(diǎn)MD點(diǎn)的距離的2倍,則點(diǎn)M所表示的數(shù)是多少?

查看答案和解析>>

同步練習(xí)冊答案