精英家教網 > 初中數學 > 題目詳情

【題目】課題學習:設計概率模擬實驗. 在學習概率時,老師說:“擲一枚質地均勻的硬幣,大量重復實驗后,正面朝上的概率約是 .”小海、小東、小英分別設計了下列三個模擬實驗:
小海找來一個啤酒瓶蓋(如圖1)進行大量重復拋擲,然后計算瓶蓋口朝上的次數與總次數的比值;
小東用硬紙片做了一個圓形轉盤,轉盤上分成8個大小一樣的扇形區(qū)域,并依次標上1至8個數字(如圖2),轉動轉盤10次,然后計算指針落在奇數區(qū)域的次數與總次數的比值;
小英在一個不透明的盒子里放了四枚除顏色外都相同的圍棋子(如圖3),其中有三枚是白子,一枚是黑子,從中隨機同時摸出兩枚棋子,并大量重復上述實驗,然后計算摸出的兩枚棋子顏色不同的次數與總次數的比值.

根據以上材料回答問題:
小海、小東、小英三人中,哪一位同學的實驗設計比較合理,并簡要說出其他兩位同學實驗的不足之處.

【答案】解:小英設計的模擬實驗比較合理. 小海選擇的啤酒瓶蓋質地不均勻;小東操作轉盤時沒有用力轉動,而且實驗次數太少,沒有進行大量重復實驗
【解析】由模擬實驗設計原則以及模擬實驗的實際要求一一回答即可.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,對角線AC,BD交于點O,E為AB中點,點F在CB的延長線上,且EF∥BD.
(1)求證;四邊形OBFE是平行四邊形;
(2)當線段AD和BD之間滿足什么條件時,四邊形OBFE是矩形?并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】把正整數1,23,4,…排列成如圖所示的一個表.

1)用一正方形在表中隨意框住4個數,把其中最大的數記為x,另三個數用含x的式子表示出來,從大到小依次是   ,   ,   ;

2)在(1)的前提下,當被框住的4個數之和等于984時,x位于該表的第幾行第幾列?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:一組數據x1,x2,x3,x4,x5的平均數是2,方差是,那么另一組數據3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均數和方差分別是( 。

A. 2, B. 2,1 C. 4, D. 4,3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某工廠接受了20天內生產1200GH型電子產品的總任務.已知每臺GH型產品由4G型裝置和3H型裝置配套組成.工廠現(xiàn)有80名工人,每個工人每天能加工6G型裝置或3H型裝置.工廠將所有工人分成兩組同時開始加工,每組分別加工一種裝置,并要求每天加工的G、H型裝置數量正好組成GH型產品.

(1)按照這樣的生產方式,工廠每天能配套組成多少套GH型電子產品?

(2)工廠補充10名新工人,這些新工人只能獨立進行G型裝置的加工,且每人每天只能加工4G型裝置,則補充新工人后每天能配套生產多少產品?

(3)為了在規(guī)定期限內完成總任務,請問至少需要補充多少名(2)中的新工人才能在規(guī)定期內完成總任務?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一元二次方程指:含有一個未知數,且未知數的最高次數為2的等式,求一元二次方程解的方法如下:第一步:先將等式左邊關于x的項進行配方, ,第二步:配出的平方式保留在等式左邊,其余部分移到等式右邊,;第三步:根據平方的逆運算,求出-3;第四步:求出.類比上述求一元二次方程根的方法,(1)解一元二次方程:;

2)求代數式的最小值;

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,銳角三角形 ABC 和銳角三角形 A'B'C'中,ADA'D'分別是邊 BC、B'C'上的高,且ABA'B',ADA'D'.要使△ABC≌△A'B'C',則應補充條件:________(填寫一個即可)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,對于任意三點A,B,C,給出如下定義: 如果矩形的任何一條邊均與某條坐標軸平行,且A,B,C三點都在矩形的內部或邊界上,則稱該矩形為點A,B,C的覆蓋矩形.點A,B,C的所有覆蓋矩形中,面積最小的矩形稱為點A,B,C的最優(yōu)覆蓋矩形.例如,下圖中的矩形A1B1C1D1 , A2B2C2D2 , AB3C3D3都是點A,B,C的覆蓋矩形,其中矩形AB3C3D3是點A,B,C的最優(yōu)覆蓋矩形.

(1)已知A(﹣2,3),B(5,0),C(t,﹣2). ①當t=2時,點A,B,C的最優(yōu)覆蓋矩形的面積為;
②若點A,B,C的最優(yōu)覆蓋矩形的面積為40,求直線AC的表達式;

(2)已知點D(1,1).E(m,n)是函數y= (x>0)的圖象上一點,⊙P是點O,D,E的一個面積最小的最優(yōu)覆蓋矩形的外接圓,求出⊙P的半徑r的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)如圖,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度數.

(2)上題中若∠B=40°,∠C=80°改為∠C>∠B,其他條件不變,請你求出∠EAD與∠B、∠C之間的數列關系?并說明理由.

查看答案和解析>>

同步練習冊答案