【題目】甲、乙兩人在筆直的道路AB上相向而行,甲騎自行車從A地到B地,乙駕車從B地到A地,假設(shè)他們分別以不同的速度勻速行駛,甲先出發(fā)6分鐘后,乙才出發(fā),乙的速度為千米/分,在整個過程中,甲、乙兩人之間的距離y(千米)與甲出發(fā)的時間x()之間的部分函數(shù)圖象如圖.

(1)AB兩地相距____千米,甲的速度為____千米/分;

(2)求線段EF所表示的yx之間的函數(shù)表達(dá)式;

(3)當(dāng)乙到達(dá)終點A時,甲還需多少分鐘到達(dá)終點B?

【答案】(1)24;(2)y=﹣x+33;(3)當(dāng)乙到達(dá)終點A時,甲還需50分鐘到達(dá)終點B

【解析】

(1)觀察圖象知A、B兩地相距為24km,由縱坐標(biāo)看出甲先行駛了2千米,由橫坐標(biāo)看出甲行駛2千米用了6分鐘,則甲的速度是千米/分鐘;

(2)列方程求出相遇時的時間,求出點F的坐標(biāo),再運用待定系數(shù)法解答即可;

(3)根據(jù)相遇前甲行駛的路程除以乙行駛的速度,可得乙到達(dá)A站需要的時間,根據(jù)相遇前乙行駛的路程除以甲行駛的速度,可得甲到達(dá)B站需要的時間,再根據(jù)有理數(shù)的減法,可得答案

解:(1)觀察圖象知A、B兩地相距為24km,

∵甲先行駛了2千米,由橫坐標(biāo)看出甲行駛2千米用了6分鐘,

∴甲的速度是千米/分鐘;

故答案為:24,;

(2)設(shè)甲乙經(jīng)過a分鐘相遇,根據(jù)題意得,

,解答a18,

F(18,0),

設(shè)線段EF表示的yx之間的函數(shù)表達(dá)式為ykx+b,根據(jù)題意得,

,解得,

∴線段EF表示的yx之間的函數(shù)表達(dá)式為y=﹣x+33;

(3)相遇后乙到達(dá)A地還需:(18×4(分鐘),

相遇后甲到達(dá)B站還需:(12×54(分鐘)

當(dāng)乙到達(dá)終點A時,甲還需54450分鐘到達(dá)終點B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)圖象的對稱軸為直線x=2,頂點為點C,直線y=x+m與該二次函數(shù)的圖象交于點A,B兩點,其中點A的坐標(biāo)為(5,8),點B在y軸上.

(1)求m的值和該二次函數(shù)的表達(dá)式.為線段AB上一個動點(點P不與A,B兩點重合),過點P作x軸的垂線,與這個二次函數(shù)的圖象交于點E.

①設(shè)線段PE的長為h,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

②若直線AB與這個二次函數(shù)圖象的對稱軸的交點為D,求當(dāng)四邊形DCEP是平行四邊形時點P的坐標(biāo).

(3)若點P(x,y)為直線AB上的一個動點,試探究:以PB為直徑的圓能否與坐標(biāo)軸相切?如果能請求出點P的坐標(biāo),如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】世界500H公司決定購買某演唱會門票獎勵部分優(yōu)秀員工,演唱會的購票方式有以下兩種,

方式一:若單位贊助廣告費10萬元,則該單位所購門票的價格為每張0.02萬元(其中總費用=廣告贊助費+門票費);

方式二:如圖所示,設(shè)購買門票x張,總費用為y萬元

1)求用購票方式一yx的函數(shù)關(guān)系式;

2)若HA兩家公司分別釆用方式一、方式二購買本場演唱會門票共400張,且A公司購買超過100張,兩公司共花費27.2萬元,求HA兩公司各購買門票多少張?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,按如下步驟作圖:①以點A為圓心,AB長為半徑畫;②以點C為圓心,CB長為半徑畫弧,兩弧相交于點D;③連結(jié)BD,與AC交于點E,連結(jié)AD,CD

1)填空:△ABC≌△ ACBD的位置關(guān)系是

2)如圖2,當(dāng)AB=BC時,猜想四邊形ABCD是什么四邊形,并證明你的結(jié)論.

3)在(2)的條件下,若AC=8cm,BD=6cm,則點BAD的距離是 cm,若將四邊形ABCD通過割補,拼成一個正方形,那么這個正方形的邊長為 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖A在數(shù)軸上對應(yīng)的數(shù)為-2.

(1)B在點A右邊距離A4個單位長度,則點B所對應(yīng)的數(shù)是_____.

(2)(1)的條件下,點A以每秒2個單位長度沿數(shù)軸向左運動,點B以每秒3個單位長度沿數(shù)軸向右運動.現(xiàn)兩點同時運動,當(dāng)點A運動到-6的點處時,求A、B兩點間的距離.

(3)(2)的條件下,現(xiàn)A點靜止不動,B點以原速沿數(shù)軸向左運動,經(jīng)過多長時間A、B兩點相距4個單位長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】25 日某路段雷達(dá)測速區(qū)監(jiān)測到一組汽車時速數(shù)據(jù),經(jīng)整理得到如下頻數(shù)表和頻數(shù)直方圖(每組含后一邊界值,不含前一邊界值).

1)請你把表中的數(shù)據(jù)填寫完整.

2)補全頻數(shù)直方圖.

3)若該路段限速 70(汽車時速高于 70 千米/小時即為違章),抽測到違章車輛有多少輛?統(tǒng)計表明 25 日全天通過這個路段的汽車大約有 15000 輛,請估計這天超速違章的車輛有多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠計劃每天生產(chǎn)零件個,但實際每天生產(chǎn)量與計劃量相比有出入. 下表是某周的生產(chǎn)情況(超產(chǎn)數(shù)量記為正、減產(chǎn)數(shù)量記為負(fù)):

星期

增減

(1)由表可知該廠星期四生產(chǎn)零件 個,這周實際生產(chǎn)零件 .(用含的代數(shù)式表示)

(2) 產(chǎn)量最高日比最低日多生產(chǎn)零件 .

(3) 若該周廠計劃每天生產(chǎn)零件數(shù)是,每個零件應(yīng)支付工資元,且每天超計劃數(shù)的零件每個另獎元,那這周實際應(yīng)支付工資多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,在RtABCRtADE中,ABAC,ADAE,且點DBC邊上滑動(點D不與點BC重合),連接EC,

①則線段BC,DC,EC之間滿足的等量關(guān)系式為   ;

②求證:BD2+CD22AD2;

2)如圖2,在四邊形ABCD中,∠ABC=∠ACB=∠ADC45°.若BD9,CD3,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商人小周于上周買進某農(nóng)場品10000,每千克2.4元,進入批發(fā)市場后共占5個攤位,每個攤位最多能容納2000該品種的農(nóng)產(chǎn)品,每個攤位的市場管理價為每天20.下表為本周內(nèi)該農(nóng)產(chǎn)品每天的批發(fā)價格比前一天的漲跌情況.

星期

與前一天相比價格的漲跌情況/

+0.3

-0.1

+0.25

+0.2

-0.5

當(dāng)天的交易量/

2500

2000

3000

1500

1000

(1)星期四該農(nóng)產(chǎn)品的價格為每千克多少元?

(2)本周內(nèi)該農(nóng)產(chǎn)品的最高價格為每千克多少元?最低價格為每千克多少元?

(3)小周在銷售過程中采用逐步減少攤位個數(shù)的方法來降低成本,增加收益,這樣他在本周的買賣中共賺了多少錢?請你幫他算一算.

查看答案和解析>>

同步練習(xí)冊答案