【題目】在平面直角坐標(biāo)系中,等腰的底邊在軸上,已知,拋物線(其中)經(jīng)過三點(diǎn),雙曲線(其中)經(jīng)過點(diǎn)軸,軸,垂足分別為且
(1)求出的值;當(dāng)為直角三角形時(shí),請(qǐng)求出的表達(dá)式;
(2)當(dāng)為正三角形時(shí),直線平分,求時(shí)的取值范圍;
(3)拋物線(其中)有一時(shí)刻恰好經(jīng)過點(diǎn),且此時(shí)拋物線與雙曲線(其中)有且只有一個(gè)公共點(diǎn)(其中),我們不妨把此時(shí)刻的記作,請(qǐng)直接寫出拋物線(其中)與雙曲線(其中)有一個(gè)公共點(diǎn)時(shí)的取值范圍.(是已知數(shù))
【答案】(1);(2);(3)
【解析】
(1)根據(jù)題意得,,故可得出k=;由變形為得A,B兩點(diǎn)為拋物線與x軸的交點(diǎn),故點(diǎn)C為直角頂點(diǎn),求出點(diǎn)C坐標(biāo),代入,求出a的值即可;
(2)由為正三角形可求出點(diǎn)C坐標(biāo),從而得出拋物線y2的解析式,再根據(jù)直線平分求出b和c,得到直線y3解析式,聯(lián)立y1與y3,y2與y3,求出交點(diǎn)坐標(biāo),從而解決問題;
(3)分、、、,四種情況分別求解即可.
(1)∵點(diǎn)軸,軸,
∴,
又雙曲線經(jīng)過點(diǎn)
∴;
∵
∴拋物線y1與x軸的交點(diǎn)坐標(biāo)為(-1,0),(3,0)
∴點(diǎn)在拋物線y1上,
∴點(diǎn)C是直角頂點(diǎn),AB=3-(-1)=4,
過點(diǎn)C作CD⊥AB于點(diǎn)D,則CD=AB=2,
∴OD=AD-AO=1,
∴C(1,2)
把C(1,2)代入,求得,
∴;
∵A(-1,0),B(3,0)
∴AB=4
過C點(diǎn)作CD⊥AB,垂足為D,
∵△ABC是正三角形,
∴AC=AB=4,AD=AB=2,OD=1
∴
∴C(1,)
把C(1,) 代入,解得,,
∴
∵直線平分,
∴∠OAE=30°,
∴AE=2OE
∵AO=1,
∴,解得,
∴c=
把(-1,0)代入得,b=
∴
聯(lián)立與得
解得,,
所以當(dāng)時(shí),
聯(lián)立與得,
解得,,
當(dāng)時(shí),
所以當(dāng)時(shí),
①當(dāng)時(shí),
拋物線與雙曲線沒有公共點(diǎn);
②當(dāng)時(shí),拋物線與雙曲線有唯一公共點(diǎn)
③當(dāng)時(shí),當(dāng)拋物線右端點(diǎn)正好落在雙曲線上時(shí),
當(dāng)時(shí),拋物線與雙曲線有兩個(gè)公共點(diǎn);
④當(dāng)時(shí),拋物線和雙曲線始終有一個(gè)公共點(diǎn);
所以當(dāng)時(shí),拋物線和雙曲線始終有一個(gè)公共點(diǎn)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“端午”節(jié)前,小明爸爸去超市購買了大小、形狀、重量等都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此時(shí)從盒中隨機(jī)取出火腿粽子的概率為;媽媽從盒中取出火腿粽子3只、豆沙粽子7只送給爺爺和奶奶后,這時(shí)隨機(jī)取出火腿粽子的概率為.
(1)請(qǐng)你用所學(xué)知識(shí)計(jì)算:爸爸買的火腿粽子和豆沙粽子各有多少只;
(2)若小明一次從盒內(nèi)剩余粽子中任取2只,問恰有火腿粽子、豆沙粽子各1只的概率是多少.(用列表法或樹狀圖計(jì)算)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=﹣x+m和y=2x+n的圖象都經(jīng)過A(﹣4,0),且與y軸分別交于B、C兩點(diǎn),則△ABC的面積為( )
A.48B.36C.24D.18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于,兩點(diǎn),與軸交于點(diǎn).
(1)請(qǐng)直接寫出不等式的解集;
(2)將軸下方的圖象沿軸翻折,點(diǎn)落在點(diǎn)處,連接,,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,點(diǎn)是邊酌中點(diǎn),動(dòng)點(diǎn)在邊上運(yùn)動(dòng),以為折痕將,折疊得到,連接,若,則的最小值是_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)P、D分別在邊BC、AC上,PA⊥AB,垂足為點(diǎn)A,DP⊥BC,垂足為點(diǎn)P,.
(1)求證:∠APD=∠C;
(2)如果AB=3,DC=2,求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用線段EG,FH將正方形ABCD按如圖1所示的方式分割成4個(gè)全等的四邊形,且AE=BF=CG=DH,tan∠HFC=2,再將這四個(gè)四邊形按如圖2所示的方式拼成一個(gè)大正方形IJKL,若設(shè)正方形ABCD的面積為S1,正方形IJKL的面積為S2.小四邊形MNPQ的面積為8,則 的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在⊙O中,直徑AB=6,BC是弦,∠ABC=30°,點(diǎn)P在BC上,點(diǎn)Q在⊙O上,且OP⊥PQ.
(1)如圖1,當(dāng)PQ∥AB時(shí),求PQ的長度;
(2)如圖2,當(dāng)點(diǎn)P在BC上移動(dòng)時(shí),求PQ長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,點(diǎn)D在AC邊上一點(diǎn),連接BD,以BD為邊在AB的左側(cè)作等邊△DEB,連接AE,求證:AB平分∠EAC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com