【題目】已知在△ABC中,AB=AC,射線BM、BN在∠ABC內(nèi)部,分別交線段AC于點(diǎn)G、H.
(1)如圖1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于點(diǎn)D,分別交BC、BM于點(diǎn)E、F.
①求證:∠1=∠2;
②如圖2,若BF=2AF,連接CF,求證:BF⊥CF;
(2)如圖3,點(diǎn)E為BC上一點(diǎn),AE交BM于點(diǎn)F,連接CF,若∠BFE=∠BAC=2∠CFE,求的值.
【答案】(1)①見(jiàn)解析;②見(jiàn)解析;(2)2
【解析】
(1)①只要證明∠2+∠BAF=∠1+∠BAF=60°即可解決問(wèn)題;
②只要證明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;
(2)在BF上截取BK=AF,連接AK.只要證明△ABK≌CAF,可得S△ABK=S△AFC,再證明AF=FK=BK,可得S△ABK=S△AFK,即可解決問(wèn)題;
(1)①證明:如圖1中,
∵AB=AC,∠ABC=60°
∴△ABC是等邊三角形,
∴∠BAC=60°,
∵AD⊥BN,
∴∠ADB=90°,
∵∠MBN=30°,
∠BFD=60°=∠1+∠BAF=∠2+∠BAF,
∴∠1=∠2
②證明:如圖2中,
在Rt△BFD中,∵∠FBD=30°,
∴BF=2DF,
∵BF=2AF,
∴BF=AD,
∵∠BAE=∠FBC,AB=BC,
∴△BFC≌△ADB,
∴∠BFC=∠ADB=90°,
∴BF⊥CF
(2)在BF上截取BK=AF,連接AK.
∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,
∴∠CFB=∠2+∠4+∠BAC,
∵∠BFE=∠BAC=2∠EFC,
∴∠1+∠4=∠2+∠4
∴∠1=∠2,∵AB=AC,
∴△ABK≌CAF,
∴∠3=∠4,S△ABK=S△AFC,
∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,
∴∠KAF=∠1+∠3=∠AKF,
∴AF=FK=BK,
∴S△ABK=S△AFK,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC=6cm,BC=4cm,點(diǎn)D為AB的中點(diǎn).
⑴如果點(diǎn)P在線段BC上以1cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,△BPD與△CPQ是否全等,請(qǐng)說(shuō)明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為______cm/s時(shí),在某一時(shí)刻也能夠使△BPD與△CPQ全等.
⑵若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都按逆時(shí)針?lè)较蜓?/span>△ABC的三邊運(yùn)動(dòng).求經(jīng)過(guò)多少秒后,點(diǎn)P與點(diǎn)Q第一次相遇,并寫(xiě)出第一次相遇點(diǎn)在△ABC的哪條邊上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣2x+8分別交x軸,y軸于點(diǎn)A,B,直線yx+3交y軸于點(diǎn)C,兩直線相交于點(diǎn)D.
(1)求點(diǎn)D的坐標(biāo);
(2)如圖2,過(guò)點(diǎn)A作AE∥y軸交直線yx+3于點(diǎn)E,連接AC,BE.求證:四邊形ACBE是菱形;
(3)如圖3,在(2)的條件下,點(diǎn)F在線段BC上,點(diǎn)G在線段AB上,連接CG,FG,當(dāng)CG=FG,且∠CGF=∠ABC時(shí),求點(diǎn)G的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中,,為線段上一點(diǎn)(不與,重合),點(diǎn)為線段上一點(diǎn),,設(shè),.
(1)如圖(1),
①若,,則____________,_______________.
②若,,則____________,______________.
③寫(xiě)出與的數(shù)量關(guān)系,并說(shuō)明理由;
(2)如圖(2),當(dāng)點(diǎn)在的延長(zhǎng)線上時(shí),其它條件不變,請(qǐng)直接寫(xiě)出與的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長(zhǎng)都為m的大正方形,兩塊是邊長(zhǎng)都為n的小正方形,五塊是長(zhǎng)為m,寬為n的全等小矩形,且m>n.(以上長(zhǎng)度單位:cm)
(1)觀察圖形,可以發(fā)現(xiàn)代數(shù)式2m2+5mn+2n2可以因式分解為 ;
(2)若每塊小矩形的面積為10cm2,兩個(gè)大正方形和兩個(gè)小正方形的面積和為58cm2,試求m+n的值
(3)②圖中所有裁剪線(虛線部分)長(zhǎng)之和為 cm.(直接寫(xiě)出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)的某種產(chǎn)品按質(zhì)量分為個(gè)檔次,生產(chǎn)第一檔次(即最低檔次)的產(chǎn)品一天生產(chǎn)件,每件利潤(rùn)元,每提高一個(gè)檔次,利潤(rùn)每件增加元.
(1)每件利潤(rùn)為元時(shí),此產(chǎn)品質(zhì)量在第幾檔次?
(2)由于生產(chǎn)工序不同,此產(chǎn)品每提高一個(gè)檔次,一天產(chǎn)量減少件.若生產(chǎn)第檔的產(chǎn)品一天的總利潤(rùn)為元(其中為正整數(shù),且≤≤),求出關(guān)于的函數(shù)關(guān)系式;若生產(chǎn)某檔次產(chǎn)品一天的總利潤(rùn)為元,該工廠生產(chǎn)的是第幾檔次的產(chǎn)品?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】折疊長(zhǎng)方形的一邊,使點(diǎn)落在邊的點(diǎn)處,若,求的長(zhǎng)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】東臺(tái)市為打造“綠色城市”,積極投入資金進(jìn)行河道治污與園林綠化兩項(xiàng)工程,已知年投資萬(wàn)元,預(yù)計(jì)年投資萬(wàn)元.若這兩年內(nèi)平均每年投資增長(zhǎng)的百分率相同.
求平均每年投資增長(zhǎng)的百分率;
按此增長(zhǎng)率,計(jì)算年投資額能否達(dá)到萬(wàn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形的頂點(diǎn)的坐標(biāo)為、的坐標(biāo)為,點(diǎn)是的中點(diǎn),點(diǎn)在邊上運(yùn)動(dòng),當(dāng)是以腰長(zhǎng)為5的等腰三角形時(shí),點(diǎn)的坐標(biāo)為________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com