【題目】如圖,⊙O的直徑AB=10,CD是⊙O的弦,AC與BD相交于點(diǎn)P.
(1)設(shè)∠BPC=α,如果sinα是方程5x2-13x+6=0的根,求cosα的值;
(2)在(1)的條件下,求弦CD的長(zhǎng).
【答案】(1); (2)8.
【解析】
試題(1)利用十字相乘法,求得一元二次方程的根,即sinα的值.進(jìn)而求得cosα的值.
(2)首先連接BC,利用圓周角定理得到∠B=∠C,∠A=∠D,進(jìn)而證得△APB∽△DPC.再利用相似三角形的性質(zhì)定理及(1)中的解,求得弦CD的長(zhǎng).
試題解析: (1)∵sinα是方程5x2-13x+6=0的根
解得:sinα=2(舍去),sinα=
∴cosα=
(2) 連接BC
∵∠B=∠C,∠A=∠D
∴△APB∽△DPC
∴
∵AB為直徑
∴∠BCA為直角
∵cosα=
∴
∴CD=8.
考點(diǎn): 1.相似三角形的判定與性質(zhì);2.解一元二次方程-因式分解法;3圓周角定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將函數(shù)y= (x-2)2+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點(diǎn)A(1,m),B(4,n)平移后的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A′,B′,若曲線段AB掃過(guò)的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達(dá)式是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:各類(lèi)方程的解法
求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為x=a的形式.求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來(lái)解;類(lèi)似的,求解三元一次方程組,把它轉(zhuǎn)化為解二元一次方程組.求解一元二次方程,把它轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)解.求解分式方程,把它轉(zhuǎn)化為整式方程來(lái)解,由于“去分母”可能產(chǎn)生增根,所以解分式方程必須檢驗(yàn).各類(lèi)方程的解法不盡相同,但是它們有一個(gè)共同的基本數(shù)學(xué)思想轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.
用“轉(zhuǎn)化”的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過(guò)因式分解把它轉(zhuǎn)化為x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.
(1)問(wèn)題:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;
(2)拓展:用“轉(zhuǎn)化”思想求方程的解;
(3)應(yīng)用:如圖,已知矩形草坪ABCD的長(zhǎng)AD=8m,寬AB=3m,小華把一根長(zhǎng)為10m的繩子的一端固定在點(diǎn)B,沿草坪邊沿BA,AD走到點(diǎn)P處,把長(zhǎng)繩PB段拉直并固定在點(diǎn)P,然后沿草坪邊沿PD、DC走到點(diǎn)C處,把長(zhǎng)繩剩下的一段拉直,長(zhǎng)繩的另一端恰好落在點(diǎn)C.求AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將坐標(biāo)原點(diǎn)O沿x軸向左平移2個(gè)單位長(zhǎng)度得到點(diǎn)A,過(guò)點(diǎn)A作y軸的平行線交反比例函數(shù)y=的圖象于點(diǎn)B,AB=.
(1)求反比例函數(shù)的解析式;
(2)若P(x1,y1)、Q(x2,y2)是該反比例函數(shù)圖象上的兩點(diǎn),且x1<x2時(shí),y1>y2,指出點(diǎn)P、Q各位于哪個(gè)象限?并簡(jiǎn)要說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)圖(1)是一個(gè)蒙古包的照片,這個(gè)蒙古包可以近似看成是圓錐和圓柱組成的幾何體,如圖(2)所示.
(1)請(qǐng)畫(huà)出這個(gè)幾何體的俯視圖;
(2)圖(3)是這個(gè)幾何體的正面示意圖,已知蒙古包的頂部離地面的高度EO1=6米,圓柱部分的高OO1=4米,底面圓的直徑BC=8米,求∠EAO的度數(shù)(結(jié)果精確到0.1°).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,我國(guó)兩艘海監(jiān)船A,B在南海海域巡航,某一時(shí)刻,兩船同時(shí)收到指令,立即前往救援遇險(xiǎn)拋錨的漁船C,此時(shí),B船在A船的正南方向5海里處,A船測(cè)得漁船C在其南偏東45°方向,B船測(cè)得漁船C在其南偏東53°方向,已知A船的航速為30海里/小時(shí),B船的航速為25海里/小時(shí),問(wèn)C船至少要等待多長(zhǎng)時(shí)間才能得到救援?(參考數(shù)據(jù):sin 53°≈,cos 53°≈,tan 53°≈,≈1.41)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形AOBC的頂點(diǎn)O在原點(diǎn),邊AO,BO分別在x軸和y軸上,點(diǎn)C坐標(biāo)為(4,4),點(diǎn)D是BO的中點(diǎn),點(diǎn)P是邊OA上的一個(gè)動(dòng)點(diǎn),連接PD,以P為圓心,PD為半徑作圓,設(shè)點(diǎn)P橫坐標(biāo)為t,當(dāng)⊙P與正方形AOBC的邊相切時(shí),t的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,∠ACB=90°,D是邊AB的中點(diǎn),P是邊AC上一動(dòng)點(diǎn),BP與CD相交于點(diǎn)E.
(1)如果BC=6,AC=8,且P為AC的中點(diǎn),求線段BE的長(zhǎng);
(2)聯(lián)結(jié)PD,如果PD⊥AB,且CE=2,ED=3,求cosA的值;
(3)聯(lián)結(jié)PD,如果BP2=2CD2,且CE=2,ED=3,求線段PD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)被平均分成4個(gè)扇形,分別標(biāo)有1、2、3、4四個(gè)數(shù)字,小王和小李各轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤(pán)為一次游戲.當(dāng)每次轉(zhuǎn)盤(pán)停止后,指針?biāo)干刃蝺?nèi)的數(shù)為各自所得的數(shù),一次游戲結(jié)束得到一組數(shù)(若指針指在分界線時(shí)重轉(zhuǎn)).(1)請(qǐng)你用樹(shù)狀圖或列表的方法表示出每次游戲可能出現(xiàn)的所有結(jié)果;(2)求每次游戲結(jié)束得到的一組數(shù)恰好是方程x2﹣4x+3=0的解的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com