【題目】如圖,在△中,,分別是邊,上的點(diǎn),且,,交于點(diǎn),的延長(zhǎng)線交于點(diǎn),若,則圖中的全等三角形共有( )
A.4對(duì)B.5對(duì)C.6對(duì)D.7對(duì)
【答案】D
【解析】
先根據(jù)SAS判定△AEF≌△ADF,從而得EF=DF,∠AEF=∠ADF,再根據(jù)全等三角形的判定和性質(zhì)以AF為軸對(duì)相關(guān)的三角形依次展開(kāi)判斷即可.
解:∵,,AF=AF,∴△AEF≌△ADF(SAS);
∴EF=DF,∠AEF=∠ADF,
∵∠AEF=∠ADF,AE=AF,∠EAC=∠DAB,∴△AEC≌△ADB(ASA);
∴AC=AB,∠ACE=∠ABD,CE=BD,
∵∠ACE=∠ABD,∠CFD=∠BFE,DF=EF,∴△CDF≌△BEF(AAS);
∴CF=BF,CD=BE,
∵,AB=AC,∠ABD=∠ACE,∴△ABF≌△ACF(ASA);
∵AB=AC,,AH=AH,∴△ABH≌△ACH(SAS);
∴BH=CH,
∵BF=CF,FH=FH,BH=CH,∴△BFH≌△CFH(SSS);
∵BE=CD,CE=BD,BC=CB,∴△BEC≌△CDB(SSS).
綜上,圖中的全等三角形共有7對(duì),故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明站在池塘邊的點(diǎn)處,池塘的對(duì)面(小明的正北方向)處有一棵小樹(shù),他想知道這棵樹(shù)距離他有多遠(yuǎn),于是他向正東方向走了12步到達(dá)電線桿旁,接著再往前走了12步,到達(dá)處,然后他改向正南方向繼續(xù)行走,當(dāng)小明看到電線桿、小樹(shù)與自己現(xiàn)處的位置在一條直線上時(shí),他共走了60步.
(1)根據(jù)題意,畫(huà)出示意圖(寫(xiě)出作圖步驟);
(2)如果小明一步大約40 ,估算出小明在點(diǎn)處時(shí)小樹(shù)與他的距離為多少米,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小峰和小軒用兩枚質(zhì)地均勻的骰子做游戲,規(guī)則如下:每人隨機(jī)擲兩枚骰子一次(若擲出的兩枚骰子摞在一起,則重?cái)S),點(diǎn)數(shù)和大的獲勝;點(diǎn)數(shù)和相同為平局.
依據(jù)上述規(guī)則,解答下列問(wèn)題:
(1)隨機(jī)擲兩枚骰子一次,用列表法求點(diǎn)數(shù)和為2的概率;
(2)小峰先隨機(jī)擲兩枚骰子一次,點(diǎn)數(shù)和是7,求小軒隨機(jī)擲兩枚骰子一次,勝小峰的概率.
(骰子:六個(gè)面分別刻有1、2、3、4、5、6個(gè)小圓點(diǎn)的立方塊.點(diǎn)數(shù)和:兩枚骰子朝上的點(diǎn)數(shù)之和.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AC平分∠DAB,CE⊥AB于E,AB=AD+2BE,則下列結(jié)論:①AE=(AB+AD);②∠DAB+∠DCB=180;③CD=CB;④S S =S.其中正確結(jié)論的是_________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)用24000元購(gòu)入一批空調(diào),然后以每臺(tái)3000元的價(jià)格銷(xiāo)售,因天氣炎熱,空調(diào)很快售完;商場(chǎng)又以52000元的價(jià)格再次購(gòu)入該種型號(hào)的空調(diào),數(shù)量是第一次購(gòu)入的2倍,但購(gòu)入的單價(jià)上調(diào)了200元,售價(jià)每臺(tái)也上調(diào)了200元.
(1)商場(chǎng)第一次購(gòu)入的空調(diào)每臺(tái)進(jìn)價(jià)是多少元?
(2)商場(chǎng)既要盡快售完第二次購(gòu)入的空調(diào),又要在這兩次空調(diào)銷(xiāo)售中獲得的利潤(rùn)率不低于22%,打算將第二次購(gòu)入的部分空調(diào)按每臺(tái)九五折出售,最多可將多少臺(tái)空調(diào)打折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有四張正面分別標(biāo)有數(shù)字2,1,﹣3,﹣4的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從四張卡片中隨機(jī)地摸取一張不放回,將該卡片上的數(shù)字記為m,再隨機(jī)地摸取一張,將卡片上的數(shù)字記為n.
(1)請(qǐng)畫(huà)出樹(shù)狀圖并寫(xiě)出(m,n)所有可能的結(jié)果;
(2)求所選出的m,n能使一次函數(shù)y=mx+n的圖象經(jīng)過(guò)第二、三、四象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為A(0,a),B(b,a),且a、b滿足(a﹣2)2+|b﹣4|=0,現(xiàn)同時(shí)將點(diǎn)A,B分別向下平移2個(gè)單位,再向左平移1個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD,AB.
(1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABCD;
(2)在y軸上是否存在一點(diǎn)M,連接MC,MD,使S△MCD=S四邊形ABDC?若存在這樣一點(diǎn),求出點(diǎn)M的坐標(biāo),若不存在,試說(shuō)明理由;
(3)點(diǎn)P是直線BD上的一個(gè)動(dòng)點(diǎn),連接PA,PO,當(dāng)點(diǎn)P在BD上移動(dòng)時(shí)(不與B,D重合),直接寫(xiě)出∠BAP、∠DOP、∠APO之間滿足的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)A(8,6)分別作x軸、y軸的平行線,交y軸于點(diǎn)B,交x軸于點(diǎn)C,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿B→A→C以2個(gè)單位長(zhǎng)度/秒的速度向終點(diǎn)C運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t(秒).
(1)直接寫(xiě)出點(diǎn)B和點(diǎn)C的坐標(biāo):B( , )、C( , );
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),用含t的式子表示線段AP的長(zhǎng),并寫(xiě)出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABE中,∠BAE=105°,AE的垂直平分線MN交BE于點(diǎn)C,且AB=CE,則∠B的度數(shù)是( )
A. 45°B. 60°C. 50°D. 55°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com