【題目】已知二次函數(shù)y=x2+2x﹣3.
(1)寫出它的頂點坐標;
(2)當x取何值時,y隨x的增大而增大;
(3)求出圖象與x軸的交點坐標.
(4)當x取何值時y的值大于0.
【答案】(1)(-1,-4);(2)x>-1;(3)(-3,0)、(1,0)(4)x>1或 x<-3
【解析】
(1)把二次函數(shù)解析式化為頂點式即可求得答案;
(2)由(1)可求得其對稱軸及開口方向,根據(jù)二次函數(shù)的增減性可求得答案;
(3)令y=0可求得相應方程的兩根,則可求得拋物線與x軸的交點坐標;
(4)畫出大致圖象,觀察圖象即可得到結論.
(1)y=x2+2x﹣3=(x+1)2﹣4,∴頂點坐標為:(﹣1,﹣4);
(2)∵y=x2+2x﹣3=(x+1)2﹣4的對稱軸為:x=﹣1,開口向上,∴當x>﹣1時,y隨x的增大而增大;
(3)令y=x2+2x﹣3=0,解得:x=﹣3或x=1,∴圖象與x軸的交點坐標為(﹣3,0),(1,0).
(4)其大致圖象如圖:
由圖象可知:當x>1或 x<-3時,y的值大于0.
科目:初中數(shù)學 來源: 題型:
【題目】某通訊運營商的手機上網(wǎng)流量資費標準推出了三種優(yōu)惠方案:
方案A:按流量計費,0.1元/M;
方案B:20元流量套餐包月,包含500M流量,如果超過500M,超過部分另外計費(見圖象),如果用到1000M時,超過1000M的流量不再收費;
方案C:120元包月,無限制使用.
用x表示每月上網(wǎng)流量(單位:M),y表示每月的流量費用(單位:元),方案B和方案C對應的y關于x的函數(shù)圖象如圖所示,請解決以下問題:
(1)寫出方案A的函數(shù)解析式,并在圖中畫出其圖象;
(2)直接寫出方案B的函數(shù)解析式;
(3)若甲乙兩人每月使用流量分別在300—600M,800—1200M之間,請你分別給出甲乙二人經(jīng)濟合理的選擇方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的半徑為4,B是⊙O外一點,連接OB,且OB=6,過點B作⊙O的切線BD,切點為D,延長BO交⊙O于點A,過點A作切線BD的垂線,垂足為C.
(1)求證:AD平分∠BAC;
(2)求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩人在玩轉盤游戲時,把轉盤A、B分別分成4等份、3等份,并在每一份內(nèi)標上數(shù)字,如圖所示.游戲規(guī)定,轉動兩個轉盤停止后,指針所指的兩個數(shù)字之和為奇數(shù)時,甲獲勝;為偶數(shù)時,乙獲勝.
(1)用列表法(或畫樹狀圖)求甲獲勝的概率;
(2)你認為這個游戲規(guī)則對雙方公平嗎?請簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次實驗中,小強把一根彈簧的上端固定,在其下端懸掛物體.下面是他測得的彈簧的長度y與所掛物體的質(zhì)量石的一組對應值:
所掛物體的質(zhì)量x/kg | 0 | 1 | 2 | 3 | 4 | 5 |
彈簧的長度y/cm | 20 | 22 | 24 | 26 | 25 | 30 |
(1)上表反映了哪兩個變量之間的關系?哪個是自變量?哪個是因變量?
(2)填空:
①當所掛的物體為3kg時,彈簧長是____.不掛重物時,彈簧長是____.
②當所掛物體的質(zhì)量為8kg(在彈簧的彈性限度范圍內(nèi))時,彈簧長度是___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC在直角坐標平面內(nèi),三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).
(1)△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是 ;
(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是 ;(畫出圖形)
(3)△A2B2C2的面積是 平方單位.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了抓住梵凈山文化藝術節(jié)的商機,某商店決定購進A、B兩種藝術節(jié)紀念品.若購進A種紀念品8件,B種紀念品3件,需要950元;若購進A種紀念品5件,B種紀念品6件,需要800元.
(1)求購進A、B兩種紀念品每件各需多少元?
(2)若該商店決定購進這兩種紀念品共100件,考慮市場需求和資金周轉,用于購買這100件紀念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進貨方案?
(3)若銷售每件A種紀念品可獲利潤20元,每件B種紀念品可獲利潤30元,在第(2)問的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,,,是鄭州市二七區(qū)三個垃圾存放點,點,分別位于點的正北和正東方向,米,八位環(huán)衛(wèi)工人分別測得的長度如下表:
甲 | 乙 | 丙 | 丁 | 戊 | 戌 | 申 | 辰 | |
BC(單位:米) | 84 | 76 | 78 | 82 | 70 | 84 | 86 | 80 |
他們又調(diào)查了各點的垃圾量,并繪制了下列尚不完整的統(tǒng)計圖2,圖3:
(1)求表中長度的平均數(shù)、中位數(shù)、眾數(shù);
(2)求處的垃圾量,并將圖2補充完整;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com