已知y是x的反比例函數(shù),當x=5時,y=8.
(1)求反比例函數(shù)解析式;
(2)求y=-10時x的值.

(1);(2).

解析試題分析:(1)由y是x的反比例函數(shù)可設(shè),將x=5,y=8代入可求得k,從而得到反比例函數(shù)解析式;
(2)把y=-10代入即可求得x的值.
試題解析:(1)∵y是x的反比例函數(shù),∴設(shè).
∵當x=5時,y="8" ,∴,解得k="40."
∴反比例函數(shù)解析式為.
(2)把y=-10代入 得 ,解得 .
考點:1.待定系數(shù)法的應用;2.曲線上點的坐標與方程的關(guān)系.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:解答題

平行四邊形ABCD在平面直角坐標系中的位置如圖所示,其中A(-4,0),B(2,0),C(3,3),反比例函數(shù)y=的圖象經(jīng)過點C.

(1)求此反比例函數(shù)的解析式;
(2)將平行四邊形ABCD沿x軸翻折得到平行四邊形AD′C′B,請你通過計算說明點D′在雙曲線上;
(3)請你畫出△AD′C,并求出它的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,P1是反比例函數(shù)在第一象限圖象上的一點,已知△P1O A1為等邊三角形,點A1的坐標為(2,0).

(1)直接寫出點P1的坐標;
(2)求此反比例函數(shù)的解析式;
(3)若△P2A1A2為等邊三角形,求點A2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系的第一象限中,有一各邊所在直線均平行于坐標軸的矩形ABCD,且點A在反比例函數(shù)L1:y= (x>0) 的圖象上,點C在反比例函數(shù)L2:y= (x>0) 的圖象上(矩形ABCD夾在L1與L2之間).(1)若點A坐標為(1,1)時,則L1的解析式為              .(2)在(1)的條件下,若矩形ABCD是邊長為1的正方形,求L2的解析式.(3)若k1=1,k2=6,且矩形ABCD的相鄰兩邊分別為1和2,求符合條件的頂點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

我市某蔬菜生產(chǎn)基地在氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18℃的條件下生長最快的新品種.圖是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y(℃)隨時間x(小時)變化的函數(shù)圖象,其中BC段是雙曲線的一部分.請根據(jù)圖中信息解答下列問題:

(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18℃的時間有多少小時?
(2)求k的值;
(3)當x=16時,大棚內(nèi)的溫度約為多少度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知直線,經(jīng)過點P(,),點P關(guān)于軸的對稱點P′在反比例函數(shù))的圖象上.

(1)求的值;
(2)直接寫出點P′的坐標;
(3)求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,一次函數(shù)y=kx+1(k≠0)與反比例函數(shù)(m≠0)的圖象有公共點A(1,2).直線l⊥x軸于點N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點B,C.

(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,正比例函數(shù)y1=x的圖象與反比例函數(shù)(k≠0)的圖象相交于A、B兩點,點A的縱坐標為2.

(1)求反比例函數(shù)的解析式;
(2)求出點B的坐標,并根據(jù)函數(shù)圖象,寫出當y1>y2時,自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:計算題

如圖,已知點A(-4,2)、B( n,-4)是一次函數(shù)的圖象與反比例函數(shù)圖象的兩個交點

【小題1】求此反比例函數(shù)的解析式和點B的坐標
【小題2】根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.

查看答案和解析>>

同步練習冊答案