【題目】已知拋物線y=ax2+bx+ca≠0)的對稱軸為直線x=2,與x軸的一個交點坐標(4,0),其部分圖象如圖所示,下列結論:①拋物線過原點;②ab+c0;4a+b+c=0④拋物線的頂點坐標為(2,b);⑤當x1時,yx增大而增大.其中結論正確的是( 。

A. ①②③ B. ①④⑤ C. ①③④ D. ③④⑤

【答案】C

【解析】∵拋物線y=ax2+bx+ca≠0)的對稱軸為直線x=2,與x軸的一個交點坐標(4,0),

∴拋物線與x軸的另一個交點為(0,0),故①正確,

x=﹣1時,y=ab+c0,故②錯誤,

,得4a+b=0b=4a,

∵拋物線過點(0,0),則c=0,

4a+b+c=0,故③正確,

y=ax2+bx=ax+2=ax+2=ax224a=ax22+b,

∴此函數(shù)的頂點坐標為(2,b),故④正確,

x1時,yx的增大而減小,故⑤錯誤,

故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將ABC繞頂點C逆時針旋轉得到A′B′C′,且點B剛好落在A′B′上,若∠A=25°,∠BCA′=45°,則A′BA等于(  )

A. 30° B. 35° C. 40° D. 45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在 Rt△ABC 中,∠A=90°,∠C=30°.將△ABC 繞點 B 順時針旋轉 60°得到△A'BC',其中點 A',C'分別是點 A,C 的對應點.

(1)作出△A'BC'(要求尺規(guī)作圖,不寫作法,保留作圖痕跡);

(2)連接 AA',求∠C'A'A 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一艘漁輪在海上C處作業(yè)時,發(fā)生故障,立即向搜救中心發(fā)出救援信號,此時搜救中心的兩艘救助輪救助一號和救助二號分別位于海上A處和B處,BA的正東方向,且相距100里,測得地點CA的南偏東60,在B的南偏東30方向上,如圖所示,若救助一號和救助二號的速度分別為40/小時和30/小時,問搜救中心應派那艘救助輪才能盡早趕到C處救援?(≈1.7)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+ca≠0)的圖象如下圖所示,且關于x的一元二次方程ax2+bx+c-m=0沒有實數(shù)根,有下列結論:①b2-4ac>0;②abc<0;③m>2.其中,正確結論的個數(shù)是

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,,若點從點出發(fā),以每秒的速度沿折線運動,設運動時間為秒.

備用圖

1___________

2)若點恰好在的角平分線上,求此時的值:

3)在運動過程中,當為何值時,為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠ABC與∠BAD的度數(shù)比為12,周長是48cm,求:

1)兩條對角線的長度;

2)菱形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 1,已知拋物線 L1:y=﹣x2+2x+3 x 軸交于 A,B 兩點A在點 B 的左側,與 y 軸交于點 C,在 L1 上任取一點 P,過點 P 作直線 l⊥x 軸, 垂足為D,將 L1 沿直線 l 翻折得到拋物線L2,交 x 軸于點 M,N(M 在點 N 的左側).

(1)L1 L2 重合時,求點 P 的坐標;

(2)當點 P 與點 B 重合時,求此時 L2 的解析式;并直接寫出 L1 與 L2 中,y 均隨x 的增大而減小時的 x 的取值范圍;

(3)連接 PM,PB,設點 P(m,n),當 n=m 時,求△PMB 的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD中,BE平分∠DBC且交CD邊于點E,將△BCE繞點C順時針旋轉到△DCF的位置,并延長BE交DF于點G.

(1)求證:△BDG∽△DEG;

(2)若EGBG=4,求BE的長.

查看答案和解析>>

同步練習冊答案