【題目】如圖是一個摩天輪,它共有8個座艙,依次標(biāo)為1~8號,摩天輪中心O的離地高度為50米,摩天輪中心到各座艙中心均相距25米,在運行過程中,當(dāng)1號艙比3號艙高5米時,1號艙的離地高度為_____米.
【答案】70或35
【解析】
根據(jù)題意分兩種情況:①如圖1作BA、CD分別垂直于摩天輪水平的直徑,A、D為垂足,則∠BAO=∠ODC=90°,∠AOB+∠B=90°,由題意得出∠BOC=90°,OB=OC=25,AB=CD+5,證明△AOB≌△DCO(AAS),得出OA=CD,AB=OD,設(shè)OA=x,則AB=x+5,在Rt△AOB中,由勾股定理得出方程,解方程即可;同理可求出如圖2時,1號艙的離地高度.
解:根據(jù)題意分兩種情況:①如圖1所示:作BA、CD分別垂直于摩天輪水平的直徑,A、D為垂足,
則∠BAO=∠ODC=90°,∠AOB+∠B=90°,
由題意得:∠BOC=90°,OB=OC=25,AB=CD+5,
∴∠AOB+∠COD=90°,
∴∠B=∠COD,
在△AOB和△DCO中, ,
∴△AOB≌△DCO(AAS),
∴OA=CD,AB=OD,
設(shè)OA=x,則AB=x+5,
在Rt△AOB中,由勾股定理得:x2+(x+5)2=252,
解得:x=15,
∴AB=15+5=20(米),
∴1號艙的離地高度為50+20=70(米);
②如圖2,同①可得AB=15,
∴1號艙的離地高度為50-15=35(米).
故答案為:70或35.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在以“青春心向覺,建功新時代”為主題的校園文化藝術(shù)節(jié)期間,舉辦了合唱,群舞,書法,演講共四個項目的比賽,要求每位學(xué)生必須參加且僅參加一項,小紅隨機(jī)調(diào)查了部分學(xué)生的報名情況,并繪制了下列兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中信息解答下列問題:
(1)本次調(diào)查的學(xué)生總?cè)藬?shù)是多少?扇形統(tǒng)計圖中“”部分的圓心角度數(shù)是多少?
(2)請將條形統(tǒng)計圖補(bǔ)充完整;
(3)若全校共有1800名學(xué)生,請估計該校報名參加書法和演講比賽的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在6.26國際禁毒日到來之際,重慶市教委為了普及禁毒知識,提高禁毒意識,舉辦了“關(guān)愛生命,拒絕毒品”的知識競賽.某校初一、初二年級分別有300人,現(xiàn)從中各隨機(jī)抽取20名同學(xué)的測試成績進(jìn)行調(diào)查分析,成績?nèi)缦拢?/span>
(1)根據(jù)上述數(shù)據(jù),將下列表格補(bǔ)充完成.
(整理、描述數(shù)據(jù)):
分?jǐn)?shù)段 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
初一人數(shù) | 2 | _______ | _______ | 12 |
初二人數(shù) | 2 | 2 | 1 | 15 |
(分析數(shù)據(jù)):樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、滿分率如表:
年級 | 平均數(shù) | 中位數(shù) | 滿分率 |
初一 | 93 | ________ | |
初二 | ________ |
(得出結(jié)論):
(2)估計該校初一、初二年級學(xué)生在本次測試成績中可以得到滿分的人數(shù)共______人;
(3)你認(rèn)為哪個年級掌握禁毒知識的總體水平較好,請從兩個方面說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明對九(1)、九(2)班(人數(shù)都為50人)參加“陽光體育”的情況進(jìn)行了調(diào)查,統(tǒng)計結(jié)果如圖所示.下列說法中正確的是( )
A.喜歡乒乓球的人數(shù)(1)班比(2)班多B.喜歡足球的人數(shù)(1)班比(2)班多
C.喜歡羽毛球的人數(shù)(1)班比(2)班多D.喜歡籃球的人數(shù)(2)班比(1)班多
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與軸交于點A(-2.0),與反比例函數(shù)y=(m≠0)的圖象交于點B(2,n),連接BO,若S△AOB=4.
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式:
(2)若直線AB與y軸的交點為C.求△OCB的面積
(3)根據(jù)圖象,直接寫出當(dāng)x>0時,不等式>kx+b的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是對角線BD上一點,連接AE,CE.
(1)求證:AE=CE;
(2)若BC=,BE=6,求tan∠BAE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D在AB上,以AD為直徑的⊙O與邊BC相切于點E,與邊AC相交于點G,且,連接GO并延長交⊙O于點F,連接BF.
(1)求證:AO=AG;
(2)求證:BF是⊙O的切線;
(3)若BD=6,求圖形中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與坐標(biāo)軸軸交于點與軸交于點過兩點的拋物線,點為線段上一動點,過點作垂直軸于點交拋物線于點.
(1)求拋物線的解析式;
(2)當(dāng)時,求四邊形的面積;
(3)是否存在點,使得和相似?若存在,求出點的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com