【題目】在數學活動課上,小明提出這樣一個問題:∠B=∠C=90°,E是BC的中點,DE平分∠ADC,如圖,則下列說法正確的有( 。﹤.
(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;(4)AE⊥DE;(5)AB∥CD.
A. 2個 B. 3個 C. 4個 D. 5個
【答案】C
【解析】
取AD的中點F,連接EF.根據平行線的性質可證得(1)(4)(5),根據梯形中位線定理可證得(3)正確.根據全等三角形全等的判定可證得(2)的正誤,即可得解.
解:如圖:取AD的中點F,連接EF.
∵∠B=∠C=90°,
∴AB∥CD;[結論(5)]
∵E是BC的中點,F是AD的中點,
∴EF∥AB∥CD,2EF=AB+CD(梯形中位線定理)①;
∴∠CDE=∠DEF(兩直線平等,內錯角相等),
∵DE平分∠ADC,
∴∠CDE=∠FDE=∠DEF,
∴DF=EF;
∵F是AD的中點,∴DF=AF,
∴AF=DF=EF②,
由①得AF+DF=AB+CD,即AD=AB+CD;[結論(3)]
由②得∠FAE=∠FEA,
由AB∥EF可得∠EAB=∠FEA,
∴∠FAE=∠EAB,即EA平分∠DAB;[結論(1)]
由結論(1)和DE平分∠ADC,且DC∥AB,可得∠EDA+∠DAE=90°,則∠DEA=90°,即AE⊥DE;[結論(4)].
由以上結論及三角形全等的判定方法,無法證明△EBA≌△DCE.
正確的結論有4個.
故選:C.
科目:初中數學 來源: 題型:
【題目】如圖,已知點A、F、E、C在同一直線上,AB∥CD,∠ABE=∠CDF,AF=CE.
(1)從圖中任找兩組全等三角形;
(2)從(1)中任選一組進行證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交AC邊于點D,過點C作CF∥AB,與過點B的切線交于點F,連接BD.
(1)求證:BD=BF;
(2)若AB=10,CD=4,求BC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】反比例函數的圖象的一支在第一象限,A(﹣1,a)、B(﹣3,b)均在這個函數的圖象上.
(1)圖象的另一支位于什么象限?常數n的取值范圍是什么?
(2)試比較a、b的大;
(3)作AC⊥x軸于點C,若△AOC的面積為5,求這個反比例函數的表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數的圖象與坐標軸分別交于、兩點,與反比例函數的圖象交點為、,軸,垂足為,若,,的面積為
(1)求一次函數與反比例函數的解析式;
(2)連接、,求的面積;
(3)直接寫出當時,的解集.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,我國兩艘海監(jiān)船 A,B 在南海海域巡邏,某一時刻,兩船同時收到指令,立即前往救援遇險拋錨的漁船 C,此時,B 船在A 船的正南方向 15 海里處,A 船測得漁船 C 在其南偏東 45°方向,B 船測得漁船 C 在其南偏東 53°方向,已知 A 船的航速為 30 海里/小時,B 船的航速為 25 海里/小時,問 C 船至少要等待多長時間才能得到救援?(參考數據:sin53°≈,cos53°≈,tan53°≈ 4 , 1.41 )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】《函數的圖象與性質》拓展學習片段展示:
【問題】
如圖①,在平面直角坐標系中,拋物線y=a(x-2)2-4經過原點O,與x軸的另一個交點為A,則a= ,點A的坐標為 .
【操作】
將圖①中的拋物線在x軸下方的部分沿x軸翻折到x軸上方,如圖②.直接寫出翻折后的這部分拋物線對應的函數解析式: .
【探究】
在圖②中,翻折后的這部分圖象與原拋物線剩余部分的圖象組成了一個“W”形狀的新圖象,則新圖象對應的函數y隨x的增大而增大時,x的取值范圍是 .
【應用】結合上面的操作與探究,繼續(xù)思考:
如圖③,若拋物線y=(x-h)2-4與x軸交于A,B兩點(A在B左),將拋物線在x軸下方的部分沿x軸翻折,同樣,也得到了一個“W”形狀的新圖象.
(1)求A、B兩點的坐標;(用含h的式子表示)
(2)當1<x<2時,若新圖象的函數值y隨x的增大而增大,求h的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com