【題目】如圖,在△ABC中,AB10m,BC40m,∠C90°,點(diǎn)P從點(diǎn)A開始沿邊AC邊向點(diǎn)C2m/s的速度勻速移動,同時另一點(diǎn)QC點(diǎn)開始以3m/s的速度沿著邊CB勻速移動,幾秒時,△PCQ的面積等于432m2

【答案】9秒時,△PCQ的面積等于432m2

【解析】

根據(jù)勾股定理求出AC的長,然后根據(jù)運(yùn)動速度,設(shè)x秒后,PCQ的面積等于432m2,從而列出方程進(jìn)一步求解即可。

在△ABC中,AB10mBC40m,∠C90°,

AC50m

設(shè)x秒時,△PCQ的面積等于432m2

依題意,得:×3x×(502x)=432

解得:x19,x216

3x40

x13,

x9

答:9秒時,△PCQ的面積等于432m2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:(1)如圖①,在RtABC中,ABAC,DBC邊上一點(diǎn)(不與點(diǎn)B,C重合),將線段AD繞點(diǎn)A逆時針旋轉(zhuǎn)90°得到AE,連接EC,則線段BC,DCEC之間滿足的等量關(guān)系式為   ;

探索:(2)如圖②,在RtABCRtADE中,ABAC,ADAE,將△ADE繞點(diǎn)A旋轉(zhuǎn),使點(diǎn)D落在BC邊上,試探索線段AD,BD,CD之間滿足的等量關(guān)系,并證明你的結(jié)論;

應(yīng)用:(3)如圖③,在四邊形ABCD中,∠ABC=∠ACB=∠ADC45°.若BD9,CD3,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)低碳環(huán)保,綠色出行的公益活動,小燕和媽媽決定周日騎自行車去圖書館借書.她們同時從家出發(fā),小燕先以150/分的速度騎行一段時間,休息了5分鐘,再以m/分鐘的速度到達(dá)圖書館,而媽媽始終以120/分鐘的速度騎行,兩人行駛的路程y(米)與時間x(分鐘)的關(guān)系如圖,請結(jié)合圖像,解答下列問題:

1)圖書館到小燕家的距離是 米;

2a= b= ,m= ;

3)媽媽行駛的路程y(米)關(guān)于時間x(分鐘)的函數(shù)解析式是 ;定義域是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是平行四邊形,OB=OC=2AB=.

(1)求點(diǎn)D的坐標(biāo),直線CD的函數(shù)表達(dá)式;

(2)已知點(diǎn)P是直線CD上一點(diǎn),當(dāng)點(diǎn)P滿足SPAO=SABO時,求點(diǎn)P的坐標(biāo);

(3)若點(diǎn)M在平面直角坐標(biāo)系內(nèi),則在直線AB上是否存在點(diǎn)F(不與A、B重合),使以A、 C、 F、M為頂點(diǎn)的四邊形為菱形?若存在,直接寫出F點(diǎn)的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在等邊△ABC中,點(diǎn)D是邊AC上一點(diǎn),連接BD,將△BCD繞著點(diǎn)B逆時針旋轉(zhuǎn)60,得到△BAE,連接ED,則下列結(jié)論中:①AE∥BC;②∠DEB=60;③∠ADE=∠BDC,其中正確結(jié)論的序號是(

A.①②B.①③C.②③D.只有①

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(9)已知:ABCD的兩邊AB,AD的長是關(guān)于x的方程的兩個實(shí)數(shù)根.

1)當(dāng)m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;

2)若AB的長為2,那么ABCD的周長是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一、閱讀材料:

已知實(shí)數(shù)m,n滿足(2m2n21)(2m2n21=80,試求2m2n2的值.

解:設(shè)2m2n2=t,則原方程變?yōu)椋?/span>t1)(t1=80,整理得t21=80,t2=81,所以t=9,因?yàn)?/span>2m2n20,所以2m2n2=9

二、方法歸納:

上面這種方法稱為“     法”,把其中某些部分看成一個整體,并用新字母代替(即換元),則能使復(fù)雜的問題簡單化.

三、探索實(shí)踐:

根據(jù)以上閱讀材料內(nèi)容,解決下列問題,并寫出解答過程.

1)已知實(shí)數(shù)x、y,滿足(2x22y23)(2x22y23=27,求x2y2的值.

2)已知RtACB的三邊為a、b、cc為斜邊),其中ab滿足(a2b2)(a2b24=5,求RtACB外接圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】)甲乙兩人在相同條件下完成了5次射擊訓(xùn)練,兩人的成績?nèi)鐖D所示.

1)甲射擊成績的眾數(shù)為 環(huán),乙射擊成績的中位數(shù)為 環(huán);

2)計(jì)算兩人射擊成績的方差;

3)根據(jù)訓(xùn)練成績,你認(rèn)為選派哪一名隊(duì)員參賽更好,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車租賃公司共有汽車50輛,市場調(diào)查表明,當(dāng)租金為每輛每日200元時可全部租出,當(dāng)租金每提高10元,租出去的車就減少2輛.

1)當(dāng)租金提高多少元時,公司的每日收益可達(dá)到10120元?

2)公司領(lǐng)導(dǎo)希望日收益達(dá)到10200元,你認(rèn)為能否實(shí)現(xiàn)?若能,求出此時的租金,若不能,請說明理由.

3)汽車日常維護(hù)要一定費(fèi)用,已知外租車輛每日維護(hù)費(fèi)為100元,未租出的車輛維護(hù)費(fèi)為50元,當(dāng)租金為多少元時,公司的利潤恰好為5500元?(利潤=收益一維護(hù)費(fèi)).

查看答案和解析>>

同步練習(xí)冊答案