【題目】如圖,一般捕魚船在A處發(fā)出求救信號,位于A處正西方向的B處有一艘救援艇決定前去數(shù)援,但兩船之間有大片暗礁,無法直線到達.救援艇決定馬上調(diào)整方向,先向北偏東方以每小時30海里的速度航行,同時捕魚船向正北低速航行.30分鐘后,捕魚船到達距離A處海里的D處,此時救援艇在C處測得D處在南偏東的方向上.
求C、D兩點的距離;
捕魚船繼續(xù)低速向北航行,救援艇決定再次調(diào)整航向,沿CE方向前去救援,并且捕魚船和救援艇同達時到E處,若兩船航速不變,求的正弦值.參考數(shù)據(jù):,,
【答案】(1)CD兩點的距離是10海里;(2)0.08
【解析】
過點C、D分別作,,垂足分別為G,F,根據(jù)直角三角形的性質(zhì)得出CG,再根據(jù)三角函數(shù)的定義即可得出CD的長;
如圖,設(shè)漁政船調(diào)整方向后t小時能與捕漁船相會合,由題意知,,,過點E作于點H,根據(jù)三角函數(shù)表示出EH,在中,根據(jù)正弦的定義求值即可;
解:過點C、D分別作,,垂足分別為G,F,
在中,,
海里,
,
四邊形ADFG是矩形,
海里,
海里,
在中,,
,
,
海里.
答:CD兩點的距離是10海里;
如圖,設(shè)漁船調(diào)整方向后t小時能與捕漁船相會合,
由題意知,,,
過點E作于點H,則,
,
,
在中,.
答:的正弦值是.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(﹣4,0),B(0,4),現(xiàn)以A點為位似中心,相似比為9:4,將OB向右側(cè)放大,B點的對應(yīng)點為C.
(1)求C點坐標及直線BC的解析式:
(2)點P從點A開始以每秒2個單位長度的速度勻速沿著x軸向右運動,若運動時間用t秒表示.△BCP的面積用S表示,請你直接寫出S與t的函數(shù)關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知AB為⊙O的直徑,CD是弦,且AB⊥CD于點E,連接AC、OC、BC
(1)求證:∠ACO=∠BCD;
(2)若EB=8cm,CD=24cm,求⊙O的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某廠按用戶需求生產(chǎn)一種產(chǎn)品,成本每件20萬元,規(guī)定每件售價不低于成本,且不高于40萬元。經(jīng)市場調(diào)查,每年的銷售量y(件)與每件售價x(萬元)滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如下表:
售價x(萬元/件) | 25 | 30 | 35 |
銷售量y(件) | 50 | 40 | 30 |
(1)求y與x之間的函數(shù)表達式;
(2)設(shè)商品每年的總利潤為W(萬元),求W與x之間的函數(shù)表達式(利潤=收入-成本);
(3)試說明(2)中總利潤W隨售價x的變化而變化的情況,并指出售價為多少萬元時獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弧ED=弧BD,連接ED、BD,延長AE交BD的延長線于點M,過點D作⊙O的切線交AB的延長線于點C.
(1)若OACD,求陰影部分的面積;
(2)求證:DEDM.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:第一步,分別以點A、D為圓心,以大于的長為半徑在AD的兩側(cè)作弧,交于兩點M、N;第二步,連結(jié)MN,分別交AB、AC于點E、F;第三步,連結(jié)DE、DF..若BD=6,AF=4,CD=3,則BE的長是( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形中,是邊的中點,沿對折矩形,使點落在處,折痕為,連接并延長交于點.
(1)求證:四邊形為平行四邊形;
(2)若矩形的邊=,=,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小軍想用鏡子測量一棵古松樹的高度,但因樹旁有一條小河,不能測量鏡子與樹之間的距離.于是他利用鏡子進行兩次測量.如圖,第一次他把鏡子放在點C處,人在點F處正好在鏡中看到樹尖A;第二次他把鏡子放在點處,人在點F處正好在鏡中看到樹尖A.已知小軍的眼睛距地面1.7m,量得m, m, m.求這棵古松樹的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,G是正方形ABCD對角線AC上一點,作GE⊥AD,GF⊥AB,垂足分別為點E、F.
求證:四邊形AFGE與四邊形ABCD相似.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com