【題目】如圖,已知二次函數(shù)(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線x=1.下列結(jié)論:

①abc>0,②4a+2b+c>0,<8a,<a<⑤b>c.

其中含所有正確結(jié)論的選項(xiàng)是(

A.①③ B.①③④ C.②④⑤ D.①③④⑤

【答案】D

【解析】

試題分析:①∵函數(shù)開(kāi)口方向向上,∴a>0;∵對(duì)稱軸在原點(diǎn)左側(cè),∴ab異號(hào),∵拋物線與y軸交點(diǎn)在y軸負(fù)半軸,∴c<0,∴abc>0,故①正確;

②∵圖象與x軸交于點(diǎn)A(﹣1,0),對(duì)稱軸為直線x=﹣1,∴圖象與x軸的另一個(gè)交點(diǎn)為(3,0),∴當(dāng)x=2時(shí),y<0,∴4a+2b+c<0,故②錯(cuò)誤;

③∵圖象與x軸交于點(diǎn)A(﹣1,0),∴當(dāng)x=﹣1時(shí),y=(﹣1)2a+b×(﹣1)+c=0,∴a﹣b+c=0,即a=b﹣c,c=b﹣a,∵對(duì)稱軸為直線x=1,=1,即b=﹣2a,∴c=b﹣a=(﹣2a)﹣a=﹣3a,∴=4a(﹣3a)﹣=<0,∵8a>0<8a,故③正確;

④∵圖象與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間,∴﹣2<c<﹣1∴﹣2<﹣3a<﹣1,∴>a>;故④正確;

⑤∵a>0,∴b﹣c>0,即b>c;故⑤正確;

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】因式分解:a2+2ab=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程(a﹣1)x2﹣2x+1=0有兩個(gè)不相等的實(shí)數(shù)根,則a的取值范圍是(
A.a<2
B.a>2
C.a<﹣2
D.a<2且a≠1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AC邊為直徑作⊙O交BC邊于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,ED、AC的延長(zhǎng)線交于點(diǎn)F.

(1)求證:EF是⊙O的切線;

(2)若EB=,且sin∠CFD=,求⊙O的半徑與線段AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算下列各式的值
(1)已知x= ,y= ,求代數(shù)式(2x+3y)2﹣(2x﹣3y)2的值.
(2)已知a﹣b=5,ab=1,求a2+b2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解一元一次方程的基本步驟去分母,移項(xiàng)、去括號(hào)、合并同類項(xiàng),化為ax=b的形式,求出x.
解方程:
(1) ;
(2)
(3) ;
(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把拋物線y=﹣2x2的圖象先向上平移3個(gè)單位,再向右平移1個(gè)單位,則平移后拋物線的解析式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線y=﹣x+4與兩坐標(biāo)軸分別相交于點(diǎn)A,B兩點(diǎn),點(diǎn)C是線段AB上任意一點(diǎn),過(guò)C分別作CD⊥x軸于點(diǎn)D,CE⊥y軸于點(diǎn)E.雙曲線 與CD,CE分別交于點(diǎn)P,Q兩點(diǎn),若四邊形ODCE為正方形,且 ,則k的值是( )

A.4
B.2
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線交x軸于A,B兩點(diǎn),交y軸于點(diǎn)C(0,3),tanOAC=

(1)求拋物線的解析式;

(2)點(diǎn)H是線段AC上任意一點(diǎn),過(guò)H作直線HNx軸于點(diǎn)N,交拋物線于點(diǎn)P,求線段PH的最大值;

(3)點(diǎn)M是拋物線上任意一點(diǎn),連接CM,以CM為邊作正方形CMEF,是否存在點(diǎn)M使點(diǎn)E恰好落在對(duì)稱軸上?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案