【題目】某藥廠銷售部門根據市場調研結果,對該廠生產的一種新型原料藥未來兩年的銷售進行預測,并建立如下模型:設第t個月該原料藥的月銷售量為P(單位:噸),P與t之間存在如圖所示的函數關系,其圖象是函數p=(0<t≤8)的圖象與線段AB的組合;設第t個月銷售該原料藥每噸的毛利潤為Q(單位:萬元),Q與t之間滿足如下關系:
Q=
(1)當8<t≤24時,求P關于t的函數解析式;
(2)設第t個月銷售該原料藥的月毛利潤為W(單位:萬元).
①求W關于t的函數解析式;
②第幾個月銷售該原料藥的月毛利潤最大?對應的月銷售量是多少?
【答案】(1)p=t+2;(2)①見解析;②第21個月, 529元.
【解析】
(1)設8<t≤24時,p=kt+b,把A,B點代入即可解答.
(2)①根據題意分情況進行討論當0<t≤8時,w=240;當8<t≤12時,w=2t2+12t+16;當12<t≤24時,w=﹣t2+42t+88;②分情況討論:當8<t≤12時,w=2(t+3)2﹣2;t=12時,取最大值,W=448;當12<t≤24時,w=﹣(t﹣21)2+529,當t=21時取得最大值529;
解:
(1)設8<t≤24時,p=kt+b
將A(8,10)、B(24,26)代入,得
,解得
∴當8<t≤24時,P關于t的函數解析式為:p=t+2
(2)①當0<t≤8時,w=(2t+8)×=240
當8<t≤12時,w=(2t+8)(t+2)=2t2+12t+16
當12<t≤24時,w=(﹣t+44)(t+2)=﹣t2+42t+88
綜上所述,W關于t的函數解析式為:
②當8<t≤12時,w=2t2+12t+16=2(t+3)2﹣2
∵8<t≤12時,W隨t的增大而增大
∴t=12時,取最大值,W=2(12+3)2﹣2=448,
當12<t≤24時,w=﹣t2+42t+88=﹣(t﹣21)2+529
∵12<t≤24時,當t=21時取得最大值,此時的最大值為529
∴第21個月銷售該原料藥的月毛利潤最大,對應的月銷售量是529元.
科目:初中數學 來源: 題型:
【題目】如圖(1),已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.
(1)證明與推斷:
①求證:四邊形CEGF是正方形;
②推斷:的值為 :
(2)探究與證明:
將正方形CEGF繞點C順時針方向旋轉α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數量關系,并說明理由:
(3)拓展與運用:
正方形CEGF在旋轉過程中,當B,E,F三點在一條直線上時,如圖(3)所示,延長CG交AD于點H.若AG=6,GH=2,則BC= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,數學小組發(fā)現米高旗桿的影子落在了包含一圓弧型小橋在內的路上,于是他們開展了測算小橋所在圓的半徑的活動.小剛身高米,測得其影長為米,同時測得的長為米,的長為米,測得小橋拱高(弧的中點到弦的距離,即的長)為米,則小橋所在圓的半徑為( )
A. B. 5 C. D. 6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=6,AC=8,D、E分別是邊AB、AC的中點,點P從點D出發(fā)沿DE方向運動,過點P作PQ⊥BC于Q,過點Q 作QR∥BA交AC于R,當點Q與點C重合時,點P停止運動.設BQ=x,QR=y.
(1)求點D到BC的距離;
(2)求y關于x的函數關系式(不要求寫出自變量的取值范圍);
(3)是否存在點P,使△PQR是以PQ為一腰的等腰三角形?若存在,請求出所有滿足要求的x的值;若不存在,請說明理由
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對角線AC,BD交于點O,AC平分∠BAD.
(1)求證:四邊形ABCD是菱形;
(2)過點C作CE⊥AB交AB的延長線于點E,連接OE,請你先補全圖形,再求出當AB=,BD=2時,OE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=24,AC=18,D是AC上一點,AD=6,在AB上取一點E,使A、D、E三點組成的三角形與△ABC相似,則AE的長為( )
A.8B.C.8或D.8或9
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖1是一臺實物投影儀,圖2是它的示意圖,折線表示固定支架,垂直水平桌面于點,點為旋轉點,可轉動,當繞點順時針旋轉時,投影探頭始終垂直于水平桌面,經測量:,,,.(結果精確到0.1)
(1)如圖2,,.
①填空:_________°;
②求投影探頭的端點到桌面的距離.
(2)如圖3,將(1)中的向下旋轉,當投影探頭的端點到桌面的距離為時,求的大。▍⒖紨祿,,,)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com