【題目】如圖,在中,的高,的角平分線,若,

1)求的度數(shù);

2)若點F為線段上任一點,當為直角三角形時,求的度數(shù).

【答案】(1);(2)當為直角三角形時,的度數(shù)為

【解析】

1)根據(jù)角平分線的定義、三角形內(nèi)角和定理計算即可;

2)分∠EFC=90°和∠FEC=90°兩種情況解答即可.

1)∵BEABC的角平分線,

∴∠CBE=EBA=32°,

∵∠AEB=CBE+C,

∴∠C=70°-32°=38°,

ADABC的高,

∴∠ADC=90°,

∴∠CAD=90°-C=52°;

2)當∠EFC=90°時,∠BEF=90°-CBE=58°,

當∠FEC=90°時,∠BEF=90°70°=20°,

故答案為:58°20°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】沙沙騎單車上學,當他騎了一段路時,想起要買某本書,于是又折回到剛經(jīng)過的某書店,買到書后繼續(xù)去學校. 以下是他本次上學所用的時間與路程的關(guān)系示意圖.

根據(jù)圖中提供的信息回答下列問題:

1)沙沙家到學校的路程是多少米?

2)在整個上學的途中哪個時間段沙沙騎車速度最快,最快的速度是多少米/分?

3)沙沙在書店停留了多少分鐘?

4)本次上學途中,沙沙一共行駛了多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班數(shù)學興趣小組利用數(shù)學活動課時間測量位于烈山山頂?shù)难椎鄣裣窀叨,已知烈山坡面與水平面的夾角為30°,山高857.5尺,組員從山腳D處沿山坡向著雕像方向前進1620尺到達E點,在點E處測得雕像頂端A的仰角為60°,求雕像AB的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,已知線段AB、CD相交于點O,連接AC、BD,我們把形如圖①的圖形稱之為“8字形

1)如圖①,若∠A=D,判斷∠C與∠B的數(shù)量關(guān)系,并說明理由;

2)如圖②,∠CAB和∠BDC的平分線APDP相交于點P,并且與CD、AB分別相交于MN,試解答下列問題:

①仔細觀察,在圖②中有 “8字形;

②∠B=80°,∠C=100°,求∠P的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是一副創(chuàng)意卡通圓規(guī),圖2是其平面示意圖,OA是支撐臂,OB是旋轉(zhuǎn)臂,使用時,以點A為支撐點,鉛筆芯端點B可繞點A旋轉(zhuǎn)作出圓.已知OA=OB=10cm.

(1)當∠AOB=18°時,求所作圓的半徑;(結(jié)果精確到0.01cm)
(2)保持∠AOB=18°不變,在旋轉(zhuǎn)臂OB末端的鉛筆芯折斷了一截的情況下,作出的圓與(1)中所作圓的大小相等,求鉛筆芯折斷部分的長度.(結(jié)果精確到0.01cm)
(參考數(shù)據(jù):sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科學計算器)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,排球運動員站在點O處練習發(fā)球,將球從D點正上方2m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關(guān)系式y(tǒng)=a(x﹣k)2+h.已知球與D點的水平距離為6m時,達到最高2.6m,球網(wǎng)與D點的水平距離為9m.高度為2.43m,球場的邊界距O點的水平距離為18m,則下列判斷正確的是( )

A.球不會過網(wǎng)
B.球會過球網(wǎng)但不會出界
C.球會過球網(wǎng)并會出界
D.無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,點 E 在正方形 ABCD AB 邊上(不與點 AB 重合),BD 是對角線,延長 AB 到點 F,使 BFAE,過點 E BD 的垂線,垂足為 M,連接 AM,CF

1)求證:MBME;

2)①用等式表示線段 AM CF 的數(shù)量關(guān)系,并證明;

②用等式表示線段 AM,BM,DM 之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的盒子中裝有顏色不同的8個小球,其中紅球3個,黑球5個.

(1)先從袋中取出m(m>1)個紅球,再從袋中隨機摸出1個球,將摸出黑球記為事件A.請完成下列表格:

事件A

必然事件

隨機事件

m的值

(2)先從袋中取出m個紅球,再放入m個一樣的黑球并搖勻,隨機摸出1個球是黑球的概率是,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:射線PO與⊙O交于A、B兩點,PC、PD分別切⊙O于點C、D.

(1)請寫出兩個不同類型的正確結(jié)論;
(2)若CD=12,tan∠CPO= ,求PO的長.

查看答案和解析>>

同步練習冊答案