【題目】如圖,正方形ABCD,點(diǎn)E,F(xiàn)分別在AD,CD上,BG⊥EF,點(diǎn)G為垂足,AB=5,AE=1,CF=2,則BG= .
【答案】
【解析】解:如圖,連接BE、BF.
∵四邊形ABCD是正方形,
∴AB=BC=CD=AD=5,
∵AE=1,AF=2,
∴DE=4,DF=3,
∴EF= =5,
∵S△BEF= EFBG=S正方形ABCD﹣S△ABE﹣S△BCF﹣S△DEF ,
∴ 5BG=25﹣ 51﹣ 52﹣ 34,
∴BG= ,
所以答案是
【考點(diǎn)精析】通過(guò)靈活運(yùn)用正方形的性質(zhì),掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等腰三角形ABC中,AB=AC,點(diǎn)D、E分別在邊AB、AC上,且AD=AE,連接BE、CD,交于點(diǎn)F.
(1)判斷∠ABE與∠ACD的數(shù)量關(guān)系,并說(shuō)明理由;
(2)求證:過(guò)點(diǎn)A、F的直線垂直平分線段BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知BD是矩形ABCD的對(duì)角線.
(1)用直尺和圓規(guī)作線段BD的垂直平分線,分別交AD、BC于E、F(保留作圖痕跡,不寫作法和證明).
(2)連結(jié)BE,DF,問(wèn)四邊形BEDF是什么四邊形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形紙片ABCD中,AB=4,BC=10,E是AD邊的中點(diǎn),把矩形紙片沿過(guò)點(diǎn)E的直線折疊,使點(diǎn)A落在BC邊上,則折痕EF的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y= x(x﹣k)經(jīng)過(guò)原點(diǎn)O,交x軸正半軸于A,過(guò)A的直線交拋物線于另一點(diǎn)B,AB交y軸正半軸于C,且OC=OA,B點(diǎn)的縱坐標(biāo)為9
(1)求拋物線的解析式;
(2)點(diǎn)P為第一象限的拋物線上一點(diǎn),連接PB、PC,設(shè)P點(diǎn)的橫坐標(biāo)為m,△PBC的面積為S,求S與m的函數(shù)關(guān)系式;
(3)在(2)的條件下,連接OP、AP,若∠APO=45°,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB,AC為⊙O的弦,AB=AC,連接AO.
(1)如圖l,求證:∠OAC=∠OAB;
(2)如圖2,過(guò)點(diǎn)B作AC的垂線交⊙O于點(diǎn)D,連接CD,設(shè)AO的延長(zhǎng)線交BD于點(diǎn)E,求證:BE=CD;
(3)在(2)的條件下,如圖3,點(diǎn)F,G分別在CD,BD的延長(zhǎng)線上,連接AG,AF,若CF×AG=8,∠GAB=45°+ ∠GAE,∠B=50°,求△ACF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C是 的中點(diǎn),⊙O的切線BD交AC的延長(zhǎng)線于點(diǎn)D,E是OB的中點(diǎn),CE的延長(zhǎng)線交切線BD于點(diǎn)F,AF交⊙O于點(diǎn)H,連接BH.
(1)求證:AC=CD;
(2)若OB=2,求BH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),C(3,1)拋物線y= x2+bx﹣2的圖象過(guò)C點(diǎn),交y軸于點(diǎn)D.
(1)在后面的橫線上直接寫出點(diǎn)D的坐標(biāo)及b的值: , b=;
(2)平移該拋物線的對(duì)稱軸所在直線l,設(shè)l與x軸交于點(diǎn)G(x,0),當(dāng)OG等于多少時(shí),恰好將△ABC的面積分為相等的兩部分?
(3)點(diǎn)P是拋物線上一動(dòng)點(diǎn),是否存在點(diǎn)P,使四邊形PACB為平行四邊形?若存在,直接寫出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,河的兩岸l1與l2相互平行,A、B是l1上的兩點(diǎn),C、D是l2上的兩點(diǎn),某人在點(diǎn)A處測(cè)得∠CAB=90°,∠DAB=30°,再沿AB方向前進(jìn)20米到達(dá)點(diǎn)E(點(diǎn)E在線段AB上),測(cè)得∠DEB=60°,求C、D兩點(diǎn)間的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com