【題目】已知二次函數(shù).
(1)將二次函數(shù)化成的形式;
(2)在平面直角坐標(biāo)系中畫出的圖象;
(3)結(jié)合函數(shù)圖象,直接寫出時(shí)x的取值范圍.
【答案】(1) ;(2)畫圖見解析;(3)-3<x <1
【解析】
(1)運(yùn)用配方法進(jìn)行變形即可;
(2)根據(jù)(1)中解析式可以先得出頂點(diǎn)坐標(biāo)以及對(duì)稱軸和開口方向朝下,然后進(jìn)一步分別可以求出與x軸的兩個(gè)交點(diǎn),及其與y軸的交點(diǎn),最后用光滑的曲線連接即可,;
(3)根據(jù)所畫出的圖像得出結(jié)論即可.
(1) ;
(2)由(1)得:頂點(diǎn)坐標(biāo)為:(-1,4),對(duì)稱軸為:,開口向下,
當(dāng)x=0時(shí),y=3,∴交y軸正半軸3處,當(dāng)y=0時(shí),x=1或-3,∴與x軸有兩個(gè)交點(diǎn),
綜上所述,圖像如圖所示:
(3)根據(jù)(2)所畫圖像可得,,-3<x <1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象相交于點(diǎn),與軸相交于點(diǎn).
(1)填空:的值為 ,的值為 ;
(2)以為邊作菱形,使點(diǎn)在軸正半軸上,點(diǎn)在第一象限,求點(diǎn)的坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x﹣1交y軸于A,交雙曲線y=(k>0,x>0)于B,將線段AB繞B點(diǎn)逆時(shí)針方向旋轉(zhuǎn)90°,A點(diǎn)的對(duì)應(yīng)點(diǎn)為C,若C點(diǎn)落在雙曲線y=(k>0,x>0)上,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=3,BC=4,E,F是對(duì)角線AC上的兩個(gè)動(dòng)點(diǎn),分別從A,C同時(shí)出發(fā)相向而行,速度均為1cm/s,運(yùn)動(dòng)時(shí)間為t秒,0≤t≤5.
(1)AE=________,EF=__________
(2)若G,H分別是AB,DC中點(diǎn),求證:四邊形EGFH是平行四邊形.(相遇時(shí)除外)
(3)在(2)條件下,當(dāng)t為何值時(shí),四邊形EGFH為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品每件成本10元,試銷階段每件產(chǎn)品的銷售單價(jià)x(元/件)與每天銷售量y(件)之間的關(guān)系如下表.
x(元/件) | 15 | 18 | 20 | 22 | … |
y(件) | 250 | 220 | 200 | 180 | … |
(1)直接寫出:y與x之間的函數(shù)關(guān)系 ;
(2)按照這樣的銷售規(guī)律,設(shè)每天銷售利潤為w(元)即(銷售單價(jià)﹣成本價(jià))x每天銷售量;求出w(元)與銷售單價(jià)x(元/件)之間的函數(shù)關(guān)系;
(3)銷售單價(jià)定為多少元時(shí),每天的銷售利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是直徑AB所對(duì)的半圓弧,點(diǎn)P是與直徑AB所圍成圖形的外部的一個(gè)定點(diǎn),AB=8cm,點(diǎn)C是上一動(dòng)點(diǎn),連接PC交AB于點(diǎn)D.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)線段AD,CD,PD,進(jìn)行了研究,設(shè)A,D兩點(diǎn)間的距離為x cm,C,D兩點(diǎn)間的距離為cm,P,D兩點(diǎn)之間的距離為cm.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù),隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小明的探究過程,請(qǐng)補(bǔ)充完整:
(1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測量,分別得到了,與x的幾組對(duì)應(yīng)值:
x/cm | 0.00 | 1.00 | 2.00 | 3.00 | 3.20 | 4.00 | 5.00 | 6.00 | 6.50 | 7.00 | 8.00 |
/cm | 0.00 | 1.04 | 2.09 | 3.11 | 3.30 | 4.00 | 4.41 | 3.46 | 2.50 | 1.53 | 0.00 |
/cm | 6.24 | 5.29 | 4.35 | 3.46 | 3.30 | 2.64 | 2.00 | m | 1.80 | 2.00 | 2.65 |
補(bǔ)充表格;(說明:補(bǔ)全表格時(shí),相關(guān)數(shù)值保留兩位小數(shù))
(2)在同一平面直角坐標(biāo)系中,描出補(bǔ)全后的表中各組數(shù)值所對(duì)應(yīng)的點(diǎn),并畫出函數(shù)的圖象:
(3)結(jié)合函數(shù)圖象解決問題:當(dāng)AD=2PD 時(shí),AD的長度約為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑, BC交⊙O于點(diǎn)D,E是的中點(diǎn),連接AE交BC于點(diǎn)F,∠ACB =2∠EAB.
(1)求證:AC是⊙O的切線;
(2)若,,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是方城縣潘河的某一段,現(xiàn)要估算河的寬度(即河兩岸相對(duì)的兩點(diǎn)A、B間的距離),可以按如下步驟操作:①先在河的對(duì)岸選定一個(gè)目標(biāo)作為點(diǎn)A;②再在河的這一邊選定點(diǎn)B和點(diǎn)C,使AB⊥BC;③再選定點(diǎn)E,使EC⊥BC,然后用視線確定BC和AE的交點(diǎn)D.
(1)用皮尺測得BC=177米,DC=61米,EC=50米,求河的寬度AB;(精確到0.1米)
(2)請(qǐng)用所學(xué)過的知識(shí)設(shè)計(jì)一種測量旗桿高度AB的方案.
要求:①畫出示意圖,所測長度用a、b、c等表示,直接標(biāo)注在圖中線段上;
②不要求寫操作步驟;③結(jié)合所測數(shù)據(jù)直接用含a、b、c等字母的式子表示出旗桿高度AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)了矩形這節(jié)內(nèi)容之后,明明同學(xué)發(fā)現(xiàn)生活中的很多矩形都很特殊,如我們的課本封面、A4 的打印紙等,這些矩形的長與寬之比都為:1,我們將具有這類特征的矩形稱為“完美矩形”如圖(1),在“完美矩形”ABCD 中,點(diǎn) P 為 AB 邊上的定點(diǎn),且 AP=AD.
(1)求證:PD=AB.
(2)如圖(2),若在“完美矩形“ABCD 的邊 BC 上有一動(dòng)點(diǎn) E,當(dāng)的值是多少時(shí),△PDE 的周長最?
(3)如圖(3),點(diǎn) Q 是邊 AB 上的定點(diǎn),且 BQ=BC.已知 AD=1,在(2)的條件下連接 DE 并延長交 AB 的延長線于點(diǎn) F,連接 CF,G 為 CF 的中點(diǎn),M、N 分別為線段 QF 和 CD 上的動(dòng)點(diǎn),且始終保持 QM=CN,MN 與 DF 相交于點(diǎn) H,請(qǐng)問 GH 的長度是定值嗎?若是,請(qǐng)求出它的值,若不是,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com