【題目】某中學(xué)為了解學(xué)生的課外閱讀情況,就“我最喜愛的課外讀物”從文學(xué)、藝術(shù)、科普和其它四個(gè)類別進(jìn)行了抽樣調(diào)查(每位同學(xué)僅選一項(xiàng)),并根據(jù)調(diào)查結(jié)果制作了尚不完整的頻數(shù)分布表:

類別

頻數(shù)(人數(shù))

頻率

文學(xué)

m

0.42

藝術(shù)

22

0.11

科普

66

n

其他

28

合計(jì)

1


(1)表中m= , n=;
(2)在這次抽樣調(diào)查中,最喜愛閱讀哪類讀物的學(xué)生最少?
(3)根據(jù)以上調(diào)查,試估計(jì)該校1200名學(xué)生中最喜愛閱讀科普讀物的學(xué)生有多少人?

【答案】
(1)84;0.33
(2)解:由題意可得:最喜愛閱讀藝術(shù)類讀物的學(xué)生最少
(3)解:1200名學(xué)生中最喜愛閱讀科普讀物的學(xué)生有:1200×0.33=396(人)
【解析】解:(1)由題意可得:22÷0.11=200, 則m=200×0.42=84,
n= =0.33,
所以答案是:84,0.33;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,EAC的中點(diǎn),AD平分∠BAC,BA:CA=2:3,ADBE相交于點(diǎn)O,若△OAE的面積比△BOD的面積大1,則△ABC的面積是( 。

A. 8 B. 9 C. 10 D. 11

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形OABC中,點(diǎn)A在x軸的正半軸,點(diǎn)C在y軸的正半軸.拋物線y= x2 x+4經(jīng)過點(diǎn)B,C,連接OB,D是OB上的動(dòng)點(diǎn),過D作DE∥OA交拋物線于點(diǎn)E(在對(duì)稱軸右側(cè)),過E作EF⊥OB于F,以ED,EF為鄰邊構(gòu)造DEFG,則DEFG周長的最大值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是以AB為直徑的圓,C為⊙O上一點(diǎn),AE和過點(diǎn)C的切線互相垂直,垂足為E,AE交⊙O于點(diǎn)D,直線EC交AB的延長線于點(diǎn)F,連結(jié)CA,CB.
(1)求證:AC平分∠DAB;
(2)若⊙O的半徑為5,且tan∠DAC= ,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)習(xí)了二次根式的相關(guān)運(yùn)算后,我們發(fā)現(xiàn)一些含有根號(hào)的式子可以表示成另一個(gè)式子的平方,如:

3+22+2+1()2+2+1(+1)2

5+22+2+3()2+2××+()2(+)2

(1)請(qǐng)仿照上面式子的變化過程,把下列各式化成另一個(gè)式子的平方的形式:

①4+2②6+4

(2)a+4(m+n)2,且am,n都是正整數(shù),試求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,點(diǎn)D,E分別是AB,BC上的點(diǎn),且滿足AC=DC=DE=BE=1,則tanA=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車在公路上勻速行駛,下表記錄的是汽車在加滿油后油箱內(nèi)余油量y(升)與行駛時(shí)間x(時(shí))之間的關(guān)系:

行駛時(shí)間x(時(shí))

0

1

2

2.5

余油量y(升)

100

80

60

50

(1)小明分析上表中所給的數(shù)據(jù)發(fā)現(xiàn)x,y成一次函數(shù)關(guān)系,試求出它們之間的函數(shù)表達(dá)式(不要求寫出自變量的取值范圍);

(2)求汽車行駛4.2小時(shí)后,油箱內(nèi)余油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)長方體的表面展開圖中四邊形ABCD是正方形(正方形的四個(gè)角都是直角、四條邊都相等),則根據(jù)圖中數(shù)據(jù)可得原長方體的體積是_________cm3

【答案】20

【解析】

利用正方形的性質(zhì)以及圖形中標(biāo)注的長度得出AB=AE=5cm,進(jìn)而得出長方體的長、寬、高進(jìn)而得出答案.

如圖

,

∵四邊形ABCD是正方形,

AB=AE=5cm,

∴立方體的高為:(7-5)÷2=1(cm),

EF=5-1=4(cm),

∴原長方體的體積是:5×4×1=20(cm3).

故答案為:20.

【點(diǎn)睛】

此題主要考查了幾何體的展開圖,利用已知圖形得出各邊長是解題關(guān)鍵.

型】填空
結(jié)束】
19

【題目】計(jì)算:

(1)-4-28-(-19)+(-24);

(2)-14÷(2017-π)0-(-)-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班學(xué)生分兩組參加某項(xiàng)活動(dòng),甲組有26人,乙組有32人,后來由于活動(dòng)需要,從甲組抽調(diào)了部分學(xué)生去乙組,結(jié)果乙組的人數(shù)是甲組人數(shù)的2倍還多1人.從甲組抽調(diào)了多少學(xué)生去乙組?

【答案】7個(gè)人

【解析】

試題設(shè)從甲組抽調(diào)了個(gè)學(xué)生去乙組,根據(jù)抽調(diào)后乙組的人數(shù)是甲組人數(shù)的2倍還多1人即可得出關(guān)于的一元一次方程,解之即可得出結(jié)論.

試題解析:設(shè)從甲組抽出人到乙組,



答:從甲組抽調(diào)了7名學(xué)生去乙組

型】解答
結(jié)束】
26

【題目】如圖,直線ABCD交于點(diǎn)O,OEAB,垂足為點(diǎn)O,OP平分∠EOD,AOD=144°.

(1)求∠AOC與∠COE的度數(shù);

(2)求∠BOP的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案