如圖,圓柱底面半徑為cm,高為9cm,點A、B分別是圓柱兩底面圓周上的點,且A、B在同一母線上,用一根棉線從A點順著圓柱側(cè)面繞3圈到B點,則這根棉線的長度最短為

A.12cm         B.cm          C.15 cm        D.cm
C.

試題分析:圓柱體的展開圖如圖所示:

用一棉線從A順著圓柱側(cè)面繞3圈到B的運動最短路線是:AC→CD→DB;
即在圓柱體的展開圖長方形中,將長方形平均分成3個小長方形,A沿著3個長方形的對角線運動到B的路線最短;
∵圓柱底面半徑為cm,
∴長方形的寬即是圓柱體的底面周長:2π×=4cm;
又∵圓柱高為9cm,
∴小長方形的一條邊長是3cm;
根據(jù)勾股定理求得AC=CD=DB=5cm;
∴AC+CD+DB=15cm;
故選C.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AC和BD相交于點O,OA=OC,OB=OD,求證:AB∥CD.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,D、E分別是AB、AC的中點,BE=2DE,過點C作CF∥BE交DE的延長線于F.
(1)求證:四邊形BCFE是菱形;
(2)若,求菱形BCFE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知AB、BC、AC分別是△ABC的三邊,用符號“>”或“<”填空:
( 1)AB+AC    BC;   (2)AC+BC    AB;   (3)AB+BC    AC.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,矩形ABCD中,AB=3,BC=4,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點B′處,當△CEB′為直角三角形時,BE的長為________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示,O為ABCD兩對角線的交點,圖中全等的三角形有(   ) 
A.1對B.2對C.3對D.4對

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,每個小正方形邊長為1,則△ABC邊AC上的高BD的長為     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若一個正多邊形的一個外角是45°,則這個正多邊形的邊數(shù)是 ( )
A.7B.8C.9 D.10

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知△ABC中,AB=AC,AB的垂直平分線交AC于D,△ABC和△DBC的周長分別是60 和38,則△ABC的腰和底邊長分別為(    )
A.24 和12B.16 和22C.20 和16D.22 和16

查看答案和解析>>

同步練習冊答案