如圖,在△ABC中,D、E分別是AB、AC的中點,BE=2DE,過點C作CF∥BE交DE的延長線于F.
(1)求證:四邊形BCFE是菱形;
(2)若,求菱形BCFE的面積.
(1)證明見解析;(2).

試題分析:(1)從所給的條件可知,DE是△ABC中位線,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四邊形BCFE是平行四邊形,又因為BE=FE,所以四邊形BCFE是菱形.
(2)因為∠BCF=120°,所以∠EBC=60°,所以菱形的邊長也為4,求出菱形的高面積就可求.
(1)∵D、E分別是AB、AC的中點,∴DE∥BC且2DE=BC.
又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC.
∴四邊形BCFE是平行四邊形.
又∵BE=FE,∴四邊形BCFE是菱形.
(2)∵∠BCF=120°,∴∠EBC=60°.
∴△EBC是等邊三角形.
∴菱形的邊長為4,高為.
∴菱形的面積為4×=.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1所示,將一個邊長為2的正方形ABCD和一個長為2、寬為1的長方形CEFD拼在一起,構成一個大的長方形ABEF.現(xiàn)將小長方形CEFD繞點C順時針旋轉至CE′F′D′,旋轉角為α.
(1)當點D′恰好落在EF邊上時,求旋轉角α的值;
(2)如圖2,G為BC中點,且0°<α<90°,求證:GD′=E′D;
(3)小長方形CEFD繞點C順時針旋轉一周的過程中,△DCD′與△CBD′能否全等?若能,直接寫出旋轉角α的值;若不能說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,∠A=∠D=90°,AC=BD,
(1)求證:AB=CD
(2)請判斷△OBC的形狀,并說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在平行四邊ABCD中,AD=2AB,F(xiàn)是AD的中點,作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結論中一定成立的是       (把所有正確結論的序號都填在橫線上)
(1)∠DCF=∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,有兩顆樹,一顆高10米,另一顆高4米,兩樹相距8米.一只鳥從一顆樹的樹梢飛到另一顆樹的樹梢,問小鳥至少飛行( 。
A.8米B.10米C.12米D.14米

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,將一張銳角三角形紙片沿中位線剪開,拼成一個新的圖形,這個新的圖形可以是下列圖形中的
A.平行四邊形 B.矩形C.梯形D.正方形

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,圓柱底面半徑為cm,高為9cm,點A、B分別是圓柱兩底面圓周上的點,且A、B在同一母線上,用一根棉線從A點順著圓柱側面繞3圈到B點,則這根棉線的長度最短為

A.12cm         B.cm          C.15 cm        D.cm

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AB∥CD,∠DBF=110°,∠ECD=70°,則∠E等于(   )
A.30° B.40° C.50° D.60°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,在△ABC中,已知AB=AC,∠BAC=120°,AD⊥AC,DC=6 求BD的長.

查看答案和解析>>

同步練習冊答案