【題目】如圖,點A1(1,1)在直線y=x上,過點A1分別作y軸、x軸的平行線交直線y= x于點B1 , B2 , 過點B2作y軸的平行線交直線y=x于點A2 , 過點A2作x軸的平行線交直線y= x于點B3 , …,按照此規(guī)律進行下去,則點An的橫坐標為

【答案】
【解析】解:∵AnBn+1∥x軸,

∴tan∠AnBn+1Bn=

當x=1時,y= x= ,

∴點B1的坐標為(1, ),

∴A1B1=1﹣ ,A1B2= = ﹣1.

∵1+A1B2= ,

∴點A2的坐標為( , ),點B2的坐標為( ,1),

∴A2B2= ﹣1,A2B3= =

∴點A3的坐標為( , ),點B3的坐標為( , ).

同理,可得:點An的坐標為( , ).

所以答案是:

【考點精析】解答此題的關鍵在于理解解直角三角形的相關知識,掌握解直角三角形的依據(jù):①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠B、∠D的兩邊分別平行.

(1)在圖1中, ∠B與∠D的數(shù)量關系是 ;

(2)在圖2中, ∠B與∠D的數(shù)量關系是 ;

(3)用一句話歸納的結論為

(4)應用:若兩個角的兩邊分別互相平行,其中一個角比另一個角的2倍小30°,求著兩個角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:已知點P(x0 , y0)和直線y=kx+b,則點P到直線y=kx+b的距離,可用公式d= 計算.
例如:求點P(﹣1,2)到直線y=3x+7的距離.
解:因為直線y=3x+7,其中k=3,b=7.
所以點P(﹣1,2)到直線y=3x+7的距離為:d= = = =
根據(jù)以上材料,解答下列問題:
(1)求點P(1,﹣1)到直線y=x﹣1的距離;
(2)已知⊙Q的圓心Q坐標為(0,5),半徑r為2,判斷⊙Q與直線y= x+9的位置關系并說明理由;
(3)已知直線y=﹣2x+4與y=﹣2x﹣6平行,求這兩條直線之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等腰三角形的周長是10,底邊長y是腰長x的函數(shù),則下列圖象中,能正確反映y與x之間函數(shù)關系的圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形中,,點上,且,連接,將矩形沿直線翻折,點恰好落在上的點處,則________.

A.9B.8C.7D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O

1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長;

2)如圖2,動點P、Q分別從A、C兩點同時出發(fā),沿AFBCDE各邊勻速運動一周.即點PA→F→B→A停止,點QC→D→E→C停止.在運動過程中,

①已知點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為t秒,當AC、PQ四點為頂點的四邊形是平行四邊形時,求t的值.

②若點P、Q的運動路程分別為a、b(單位:cmab≠0),已知A、C、PQ四點為頂點的四邊形是平行四邊形,求ab滿足的數(shù)量關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】上周六,小明一家共7人從某地出發(fā)去參觀世博會.小明提議:讓爸爸載著爺爺、奶奶、外公、外婆去,自己和媽媽從某41路車去,最后在地鐵8號線某博物館匯合,圖中分別表示某41路車與小轎車在行駛中的路程(千米)與時間(分鐘)關系,試觀察圖像并回答下列問題:

1)某41路車在途中行駛的平均速度為 千米/分鐘;此次行駛的路程是 千米;

2)寫出小轎車在行駛過程中的函數(shù)關系式: ,定義域為 ;

3)小明和媽媽乘坐的某41路出發(fā) 分鐘后被爸爸的小轎車追上了.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列一段文字:在直角坐標系中,已知兩點的坐標是Mx1,y1),Nx2,y2)),M,N兩點之間的距離可以用公式MN計算.解答下列問題:

1)若點P24),Q(﹣3,﹣8),求P,Q兩點間的距離;

2)若點A1,2),B4,﹣2),點O是坐標原點,判斷AOB是什么三角形,并說明理由.

3)已知點A(5,5),B(-4,7),點Px軸上,且要使PA+PB的和最小,求PA+PB的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在網(wǎng)格(每個小正方形的邊長均為1)中選取9個格點(格線的交點稱為格點),如果以A為圓心,r為半徑畫圓,選取的格點中除點A外恰好有3個在圓內(nèi),則r的取值范圍為( )

A.2 <r<
B. <r≤3
C. <r<5
D.5<r<

查看答案和解析>>

同步練習冊答案