【題目】如圖,已知四邊形ABCD中,AC平分∠DAB,∠DAB60°,∠B與∠D互補(bǔ),AC4CD3,則ABAD_____

【答案】2

【解析】

利用“截長補(bǔ)短”中的補(bǔ)短,補(bǔ)出鄰補(bǔ)角即可出現(xiàn)相等角度,求出△DEC≌△BFC和△EAC≌△FAC,推出DEBF,AEAF,求出ABAD2DE,求出DE即可.

解:過CCEADAD的延長線于E,CFBAF,則∠E=∠CFB90°,

AC平分∠DAB,

CECF

∵∠B與∠ADC互補(bǔ),

∴∠B+ADC180°,

∵∠ADC+EDC180°,

∴∠B=∠EDC,

在△DEC和△BFC

∴△DEC≌△BFC,

DEBF,

AC平分∠DAB

∴∠EAC=∠FAC

在△EAC和△FAC

∴△EAC≌△FAC,

AEAF,

ABAD=(AF+BF)﹣(AEDE)=(AE+DE)﹣(AEDE)=2DE

∵在RtAEC中,∠E90°,∠EAC30°,AC4,

CEAC2,

RtDEC中,∠E90°,DC3,CE2,

由勾股定理得:DE

ABAD2DE2,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:二次函數(shù)圖象的頂點(diǎn)坐標(biāo)是(3,5),且拋物線經(jīng)過點(diǎn)A(1,3).

(1)求此拋物線的表達(dá)式;

(2)如果點(diǎn)A關(guān)于該拋物線對稱軸的對稱點(diǎn)是B點(diǎn),且拋物線與y軸的交點(diǎn)是C點(diǎn),求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B是反比例函數(shù)y=圖象上兩點(diǎn),ACy軸于CBDx軸于D,ACBDOC,S四邊形ABCD9,則k值為( 。

A.8B.10C.12D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,AD//BCACBD相交于點(diǎn)O,點(diǎn)E在線段OB上,AE的延長線與BC相交于點(diǎn)FOD2 = OB·OE

1)求證:四邊形AFCD是平行四邊形;

2)如果BC=BD,AE·AF=AD·BF,求證:ABEACD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1896年,挪威生理學(xué)家古德貝發(fā)現(xiàn),每個人有一條腿邁出的步子比另一條腿邁出的步子長的特點(diǎn),這就導(dǎo)致每個人在蒙上眼睛行走時,雖然主觀上沿某一方向直線前進(jìn),但實(shí)際上走出的是一個大圓圈!這就是有趣的“瞎轉(zhuǎn)圈”現(xiàn)象.經(jīng)研究,某人蒙上眼睛走出的大圓圈的半徑米是其兩腿邁出的步長之差厘米的反比例函數(shù),其圖象如圖所示.

請根據(jù)圖象中的信息解決下列問題:

1)求之間的函數(shù)表達(dá)式;

2)當(dāng)某人兩腿邁出的步長之差為厘米時,他蒙上眼睛走出的大圓圈的半徑為______米;

3)若某人蒙上眼睛走出的大圓圈的半徑不小于米,則其兩腿邁出的步長之差最多是多少厘米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市為了答謝顧客發(fā)起活動:凡在本超市一次性購物滿100元的顧客,當(dāng)天均可憑購物小票參與一次抽獎活動,獎品是三種瓶裝飲品:紅酒、啤酒和酸奶,抽獎規(guī)則如下:

如圖,是一個材質(zhì)均勻可自出轉(zhuǎn)動的轉(zhuǎn)盤,轉(zhuǎn)盤被等分成五個扇形區(qū)域,各區(qū)域上分別寫有“紅”、“啤”、“酒”、“酸”、“奶”字樣;

參與一次獎活動的顧客可以進(jìn)行兩次“隨機(jī)轉(zhuǎn)動”,但若轉(zhuǎn)盤停止時指針指向兩邊區(qū)域的邊界則可以重新轉(zhuǎn)動轉(zhuǎn)盤,直到指針停到有字的區(qū)域才算完成了這次隨機(jī)轉(zhuǎn)動;

顧客參與一次抽獎活動,記錄兩次指針?biāo)竻^(qū)域?qū)?yīng)的字,若這兩個字和某種獎品名稱對應(yīng)的兩個字相同(與字的順序無關(guān)),便可獲得相應(yīng)獎品一瓶;若兩字不能組成一種獎品名時,不能獲得任何獎品,根據(jù)以上規(guī)則,回答下列問題:

1)求只做一次“隨機(jī)轉(zhuǎn)動”指針指向“酒“字的概率;

2)請用列表或畫樹狀圖的方法求顧客參與一次抽獎活動獲得一瓶紅酒的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=﹣2x+4分別交x軸、y軸于點(diǎn)AB,拋物線y=﹣2x2+bx+cA,B兩點(diǎn),點(diǎn)P是線段AB上一動點(diǎn),過點(diǎn)PPCx軸于點(diǎn)C,交拋物線于點(diǎn)D,拋物線的頂點(diǎn)為M,其對稱軸交AB于點(diǎn)N

1)求拋物線的表達(dá)式及點(diǎn)M、N的坐標(biāo);

2)是否存在點(diǎn)P,使四邊形MNPD為平行四邊形?若存在求出點(diǎn)P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在矩形中,已知,點(diǎn)邊上一點(diǎn),滿足,動點(diǎn)的速度沿線段從點(diǎn)移動到點(diǎn),連接,作,交線段于點(diǎn),設(shè)點(diǎn)移動的時間為,的長度為,的函數(shù)關(guān)系如圖②所示.

1)圖①中,_______,圖②中,_______;

2)點(diǎn)能否為線段的中點(diǎn)?若可能,求出此時的值,若不可能,請說明理由;

3)在圖①中,連接、,設(shè)交于點(diǎn),若平分的面積,求此時的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線頂點(diǎn)坐標(biāo)為(2,﹣4),且與x軸交于原點(diǎn)和點(diǎn)C,對稱軸與x軸交點(diǎn)為M

1)求拋物線的解析式;

2A點(diǎn)在拋物線上,且A點(diǎn)的橫坐標(biāo)為﹣2,在拋物線對稱軸上找一點(diǎn)B,使得ABCB的差最大,求B點(diǎn)的坐標(biāo);

3P點(diǎn)在拋物線的對稱軸上,且P點(diǎn)的縱坐標(biāo)為8.探究:在拋物線上是否存在點(diǎn)Q使得O、MP、Q四點(diǎn)共圓,若存在求出Q點(diǎn)坐標(biāo);若不存在請說明理由.

查看答案和解析>>

同步練習(xí)冊答案