將直線向上平移4個單位,所得到的直線為              
原直線的k=-2,b=0;向上平移4個單位長度得到了新直線,那么新直線的k=-2,b=0+4=4.
∴新直線的解析式為y=-2x+4,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,甲、乙兩人分別從A(1,)、B(6,0)兩點(diǎn)同時出發(fā),點(diǎn)O為坐標(biāo)原點(diǎn),甲沿AO方向、乙沿BO方向均以4km/h的速度行駛,th后,甲到達(dá)M點(diǎn),乙到達(dá)N點(diǎn).
(1)請說明甲、乙兩人到達(dá)O點(diǎn)前,MN與AB不可能平行.
(2)當(dāng)t為何值時,△OMN∽△OBA?
(3)甲、乙兩人之間的距離為MN的長,設(shè)s=MN2,求s與t之間的函數(shù)關(guān)系式,并求甲、乙兩人之間距離的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系中,有兩點(diǎn),現(xiàn)另取一點(diǎn),當(dāng)       時,的值最小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知四條直線y=kx-3,y=-1,y=3和x=1所圍成的四邊形的面積是12,則k的值為
A.3    B.4  C.1或-2D.2或-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在梯形ABCD中,ADBC,∠BAD=90°,AD=8,動點(diǎn)PA出發(fā),以每秒1個單位的速度沿ABCDD運(yùn)動.設(shè)P運(yùn)動的時間為t秒,△ADP的面積為SS關(guān)于t的圖象如圖所示,則下列結(jié)論中正確的個數(shù)( ▲ )①AB=3;②S的最大值是12;③a=7;④當(dāng)t=10時,S="4.8" .
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

為了保護(hù)環(huán)境,某化工廠一期工程完成后購買了3臺甲型和2臺乙型污水處理設(shè)備,共花費(fèi)資金54萬元,且每臺乙型設(shè)備的價格是每臺甲型設(shè)備價格的75%,實際運(yùn)行中發(fā)現(xiàn),每臺甲型設(shè)備每月能處理污水200噸,每臺乙型設(shè)備每月能處理污水160噸,且每年用于每臺甲型設(shè)備的各種維護(hù)費(fèi)和電費(fèi)為1萬元,每年用于每臺乙型設(shè)備的各種維護(hù)費(fèi)和電費(fèi)為1.5萬元.今年該廠二期工程即將完成,產(chǎn)生的污水將大大增加,于是該廠決定再購買甲、乙兩型設(shè)備共8臺用于二期工程的污水處理,預(yù)算本次購買資金不超過84萬元,預(yù)計二期工程完成后每月將產(chǎn)生不少于1300噸污水.
(1)請你計算每臺甲型設(shè)備和每臺乙型設(shè)備的價格各是多少元?
(2)請你求出用于二期工程的污水處理設(shè)備的所有購買方案;
(3)若兩種設(shè)備的使用年限都為10年,請你說明在(2)的所有方案中,哪種購買方案的總費(fèi)用最少?(總費(fèi)用=設(shè)備購買費(fèi)+各種維護(hù)費(fèi)和電費(fèi))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖1,在矩形MNPO中,動點(diǎn)R從點(diǎn)N出發(fā),沿N→P→O→M方向運(yùn)動至點(diǎn)M處停止.設(shè)點(diǎn)R運(yùn)動的路程為x,△MNR的面積為y,如果y關(guān)于x的函數(shù)圖象如圖2所示,則
矩形MNPO的周長是( ▲ )
A.11B.15C.16D.24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)y=kx-3的圖象平行于直線y=-,則k=      .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知一次函數(shù)
(1)若這個函數(shù)的圖象經(jīng)過原點(diǎn),求m的值;
(2)若這個函數(shù)是一次函數(shù),且y隨著x的增大而減小,求m的取值范圍;
(3)若這個函數(shù)的圖象不經(jīng)過第二象限,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案