【題目】如圖,在直角梯形中,,點在上,且是以為底的等腰直角三角形,若,則_______,______.
【答案】6
【解析】
過點E作EF⊥AB于F,由題意則有EF∥BC∥AD,由△ABE是以AB為底邊的等腰直角三角形,可得F為AB的中點,EF為梯形的中位線,利用梯形中位線定理,EF長可求,從而AB的長可求;過點A作AG∥CD交BC于點G,得出四邊形ADCG為平行四邊形,從而有AG=CD,CG=AD,再求出BG的長,根據(jù)勾股定理求出AG的長,繼而可得出CD的長.
解:過點E作EF⊥AB于F.
∵AD∥BC,∠DAB=∠ABC=90°,
∴EF∥BC∥AD.
又∵△ABE是以AB為底邊的等腰直角三角形,
∴AE=EB,∠ABE=∠BAE=45°,
∴F為AB的中點,
∴AF=FE=FB.
∴EF為梯形的中位線.
∵AD=2cm,BC=4cm,
∴EF=(BC+AD)=3cm.
∴AB=AF+FB=3+3=6(cm);
過點A作AG∥CD交BC于點G,
∵AD∥BC,∴四邊形ADCG為平行四邊形,∴AG=CD,CG=AD=2cm.
∴BG=BC-CG=2cm,
在Rt△ABG中,AG==(cm).
∴CD=cm.
故答案為:6;.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,對角線AC,BD交于點O,E是BC上一點,連接DE,點F在邊CD上,且AF⊥CD交DE于點G,連接CG.已知∠DEC=45°,GC⊥BC.
(1)若∠DCG=30°,CD=4,求AC的長.
(2)求證:AD=CG+DG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀理解
如圖,點,在反比例函數(shù)的圖象上,連接,取線段的中點.分別過點,,作軸的垂線,垂足為,,,交反比例函數(shù)的圖象于點.點,,的橫坐標(biāo)分別為,,.小紅通過觀察反比例函數(shù)的圖象,并運用幾何知識得出結(jié)論:AE+BG=2CF,CF>DF,由此得出一個關(guān)于,,之間數(shù)量關(guān)系的命題:若,則______.
(2)證明命題
小東認(rèn)為:可以通過“若,則”的思路證明上述命題.
小晴認(rèn)為:可以通過“若,,且,則”的思路證明上述命題.
請你選擇一種方法證明(1)中的命題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的弦,點C是弧AB的中點,D是弦AB上一動點,且不與A、B重合,CD的延長線交于⊙O點E,連接AE、BE,過點A作AF⊥BC,垂足為F,∠ABC=30°.
(1)求證:AF是⊙O的切線;
(2)若BC=6,CD=3,則DE的長為 ;
(3)當(dāng)點D在弦AB上運動時,的值是否發(fā)生變化?如果變化,請寫出其變化范圍;如果不變,請求出其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了提高學(xué)生的綜合素質(zhì),成立了以下社團:.機器人,.圍棋,.羽毛球,.電影配音.每人只能加入一個社團.為了解學(xué)生參加社團的情況,從加社團的學(xué)生中隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖,其中圖中所占扇形的圓心角為.
根據(jù)以上信息,解答下列問題:
這次被調(diào)查的學(xué)生共有 人;
請你將條形統(tǒng)計圖補充完整;
若該校共有學(xué)生加入了社團,請你估計這名學(xué)生中有多少人參加了羽毛球社團;
在機器人社團活動中,由于甲、乙、丙、丁四人平時的表現(xiàn)優(yōu)秀,現(xiàn)決定從這四人中任選兩名參加機器人大賽.用樹狀圖或列表法求恰好選中甲、乙兩位同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形在上取兩點(在左邊),以為邊作等邊三角形,使頂點在上,分別交于點.
(1)求的邊長;
(2)在不添加輔助線的情況下,當(dāng)與不重合時,從圖中找出一對相似三角形,并說明理由;
(3)若的邊在線段上移動.試猜想:與有何數(shù)量關(guān)系?并證明你猜想的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一座隧道的截面由拋物線和長方形構(gòu)成,長方形的長為8m,寬為2m,隧道最高點P位于AB的中央且距地面6m,建立如圖所示的坐標(biāo)系:
(1)求拋物線的解析式;
(2)一輛貨車高4m,寬2m,能否從該隧道內(nèi)通過,為什么?
(3)如果隧道內(nèi)設(shè)雙行道,那么這輛貨車是否可以順利通過,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某初中課外興趣活動小組對某水稻品種的稻穗谷粒數(shù)目進行調(diào)查,從試驗田中隨機抽取了30株,得到的數(shù)據(jù)如下(單位:顆):
182 | 195 | 201 | 179 | 208 | 204 | 186 | 192 | 210 | 204 |
175 | 193 | 200 | 203 | 188 | 197 | 212 | 207 | 185 | 206 |
188 | 186 | 198 | 202 | 221 | 199 | 219 | 208 | 187 | 224 |
(1)對抽取的30株水稻稻穗谷粒數(shù)進行統(tǒng)計分析,請補全下表中空格,并完善直方圖:
谷粒顆數(shù) | 175≤x<185 | 185≤x<195 | 195≤x<205 | 205≤x<215 | 215≤x<225 |
頻數(shù) | 8 | 10 | 3 | ||
對應(yīng)扇形 圖中區(qū)域 | D | E | C |
(2)如圖所示的扇形統(tǒng)計圖中,扇形A對應(yīng)的圓心角為 度,扇形B對應(yīng)的圓心角為 度;
(3)該試驗田中大約有3000株水稻,據(jù)此估計,其中稻穗谷粒數(shù)大于或等于205顆的水稻有多少株?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著新學(xué)校建成越來越多,絕大部分孩子已能就近入學(xué),某數(shù)學(xué)學(xué)習(xí)興趣小組對八年級一班學(xué)生上學(xué)的交通方式進行問卷調(diào)查,并將調(diào)查結(jié)果畫出下列兩個不完整的統(tǒng)計圖(圖1、圖2).請根據(jù)圖中的信息完成下列問題.
(1)該班參與本次問卷調(diào)查的學(xué)生共有 人;
(2)請補全圖1中的條形統(tǒng)計圖;
(3)在圖2的扇形統(tǒng)計圖中,“騎車”所在扇形的圓心角的度數(shù)是 度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com