【題目】隨著新學校建成越來越多,絕大部分孩子已能就近入學,某數(shù)學學習興趣小組對八年級一班學生上學的交通方式進行問卷調查,并將調查結果畫出下列兩個不完整的統(tǒng)計圖(圖1、圖2).請根據(jù)圖中的信息完成下列問題.

1)該班參與本次問卷調查的學生共有   人;

2)請補全圖1中的條形統(tǒng)計圖;

3)在圖2的扇形統(tǒng)計圖中,騎車所在扇形的圓心角的度數(shù)是   度.

【答案】150;(2)見解析;(3129.6

【解析】

1)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得本次問卷調查的學生數(shù);

2)根據(jù)(1)中的答案可以求得步行的人數(shù),從而可以將條形統(tǒng)計圖補充完整;

3)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得騎車所在扇形的圓心角的度數(shù).

解:(1)由題意可得,

本次問卷調查的學生共有:9÷18%50(人),

故答案為:50;

2)步行的有:50918716(人),

補全的條形統(tǒng)計圖如下圖所示;

3)在圖2的扇形統(tǒng)計圖中,騎車所在扇形的圓心角的度數(shù)是:360°×36%129.6°,

故答案為:129.6°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形中,,點上,且是以為底的等腰直角三角形,若,則_______,______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)yx0)的圖象與直線ymx交于點C,直線ly4分別交兩函數(shù)圖象于點A1,4)和點B,過點BBDl交反比例函數(shù)圖象于點 D

1)求反比例函數(shù)的解析式;

2)當BD2AB時,求點B的坐標;

3)在(2)的條件下,直接寫出不等式mx的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AB=AC,BAC=540,以AB為直徑的O分別交AC,BC于點D,E,過點B作O的切線,交AC的延長線于點F。

(1)求證:BE=CE;

(2)求CBF的度數(shù);

(3)若AB=6,求的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐

問題情境:

已知是正方形的對角線,將正方形和正方形按如圖放置.

1)如圖1,使點與點重合,相交于點,的延長線相交于點.求證:

操作發(fā)現(xiàn):

1

2)如圖2,使點上(,兩點除外),相交于點,的延長線相交于點.判斷的數(shù)量關系,并說明理由;

2

拓廣探索:

3)如圖3,使上(兩點除外),經過點,與正方形的外角的平分線相交于點.判斷的數(shù)量關系,并說明理由.

3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在扇形AOB中,∠AOB=90°,半徑OA=4.將扇形AOB沿過點B的直線折疊,點O恰好落在弧AB上點C處,折痕交OA于點D,則圖中陰影部分的面積為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結論:①AQDP;②OA2=OEOP;③SAOD=S四邊形OECF;④當BP=1時,tanOAE=,其中正確的結論是( 。

A.①③B.①②③C.①③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)作圖:作∠MON的平分線OE,在OE上任取一點A,過AABOMACON,連接BCOAD.(只保留作圖痕跡)

2BCOA的位置關系是什么?請加以證明.

3)若OA=8,AC=5,則BD是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某中學學生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進行調查統(tǒng)計.現(xiàn)從該校隨機抽取名學生作為樣本,采用問卷調查的方法收集數(shù)據(jù)(參與問卷調查的每名學生只能選擇其中一項).并根據(jù)調查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖.由圖中提供的信息,解答下列問題:

(1)求n的值;

(2)若該校學生共有1200人,試估計該校喜愛看電視的學生人數(shù);

(3)若調查到喜愛體育活動的4名學生中有3名男生和1名女生,現(xiàn)從這4名學生中任意抽取2名學生,求恰好抽到2名男生的概率.

查看答案和解析>>

同步練習冊答案