【題目】如圖,矩形中,邊長,兩條對角線相交所成的銳角為,是邊的中點,是對角線上的一個動點,則的最小值是_______.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定四邊形ABCD為平行四邊形的是( 。
A.AB∥CD,AD∥BCB.OA=OC,OB=OD
C.AD=BC,AB∥CDD.AB=CD,AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】地和地之間的鐵路交通設(shè)有特快列車和普通列車兩種車次,某天一輛普通列車從A地出發(fā)勻速駛向地,同時另一輛特快列車從地出發(fā)勻速駛向地,兩車與地的距離(千米)與行駛時間(時)的函數(shù)關(guān)系如圖所示.
(1)地到地的距離為 千米,普通列車到達(dá)地所用時間為 小時;
(2)求特快列車與地的距離與的函數(shù)關(guān)系式;
(3)在、兩地之間有一座鐵路橋,特快列車到鐵路橋后又行駛小時與普通列車相遇,直接寫出地與鐵路橋之間的距離 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小明主設(shè)計的“作一個含30°角的直角三角形”的尺規(guī)作圖過程.
已知:直線l.
求作:△ABC,使得∠ACB=90°,∠ABC=30°.
作法:如圖,
①在直線l上任取兩點O,A;
②以點O為圓心,OA長為半徑畫弧,交直線l于點B;
③以點A為圓心,AO長為半徑畫弧,交于點C;
④連接AC,BC.
所以△ABC就是所求作的三角形.
根據(jù)小明設(shè)計的尺規(guī)作圖過程:
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:在⊙O中,AB為直徑,
∴∠ACB=90°(① ),(填推理的依據(jù))
連接OC
∵OA=OC=AC,
∴∠CAB=60°,
∴∠ABC=30°(② ),(填推理的依據(jù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=mx2﹣2mx+n(m≠0)與x軸交于點A,B,點A的坐標(biāo)為(﹣2,0).
(1)寫出拋物線的對稱軸;
(2)直線過點B,且與拋物線的另一個交點為C.
①分別求直線和拋物線所對應(yīng)的函數(shù)表達(dá)式;
②點P為拋物線對稱軸上的動點,過點P的兩條直線l1:y=x+a和l2:y=﹣x+b組成圖形G.當(dāng)圖形G與線段BC有公共點時,直接寫出點P的縱坐標(biāo)t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一名大學(xué)畢業(yè)生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品的成本價為80元/件,經(jīng)市場調(diào)查發(fā)現(xiàn),該產(chǎn)品的日銷售量(單位:件)與銷售單價(單位:元/件)之間滿足一次函數(shù)關(guān)系,如圖所示.
(1)求與之間的函數(shù)解析式,并寫出自變量的取值范圍;
(2)求每天的銷售利潤(單位:元)與銷售單價之間的函數(shù)關(guān)系式,并求出每件銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?
(3)這名大學(xué)生計劃開展科技創(chuàng)新,以降低該產(chǎn)品的成本,預(yù)計在今后的銷售中,日銷售量與銷售單價仍存在(1)中的關(guān)系.若想實現(xiàn)銷售單價為90元時,日銷售利潤不低于3750元的銷售目標(biāo),該產(chǎn)品的成本單價應(yīng)不超過多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,奠定了中國傳統(tǒng)數(shù)學(xué)的基本框架.它的代數(shù)成就主要包括開方術(shù)、正負(fù)術(shù)和方程術(shù).其中,方程術(shù)是《九章算術(shù)》最高的數(shù)學(xué)成就.《九章算術(shù)》中記載:“今有甲乙二人持錢不知其數(shù).甲得乙半而錢五十,乙得甲太半而錢亦五十.問甲、乙持錢各幾何?”
譯文:“假設(shè)有甲乙二人,不知其錢包里有多少錢.若乙把自己一半的錢給甲,則甲的錢數(shù)為50;而甲把自己的錢給乙,則乙的錢數(shù)也能為50.問甲、乙各有多少錢?”
設(shè)甲持錢為x,乙持錢為y,可列方程組為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在由邊長為1個單位長度的小正方形組成的網(wǎng)格圖中,△ABC的頂點都在網(wǎng)格線交點上.
(1)圖中AC邊上的高為 個單位長度;
(2)只用沒有刻度的直尺,在所給網(wǎng)格圖中按如下要求畫圖(保留必要痕跡):
①以點C為位似中心,把△ABC按相似比1:2縮小,得到△DEC;
②以AB為一邊,作矩形ABMN,使得它的面積恰好為△ABC的面積的2倍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com