【題目】某同學(xué)在用描點法畫二次函數(shù)的圖象時,列出下面的表格:

根據(jù)表格提供的信息,下列說法錯誤的是(

A. 該拋物線的對稱軸是直線 B. 該拋物線與軸的交點坐標(biāo)為

C. D. 若點是該拋物線上一點.則

【答案】C

【解析】

根據(jù)二次函數(shù)圖像的對稱性和結(jié)合函數(shù)圖像進(jìn)行解答.

A.根據(jù)二次函數(shù)圖像性質(zhì),關(guān)于對稱軸對稱,我們看到兩個0.5,由此可求出對稱

x =-2,因此A選項正確.

B.根據(jù)對稱,對稱軸x=-2,可以得出當(dāng)x=-4的時候和x=0的時候y的值一樣,所以交點坐標(biāo)為(0,-2.5).

C.由表格看y值既有正值也有負(fù)值所以該函數(shù)與x軸必定有兩個交點,即b-4ac>0.

D.由對稱性x=0.5x=-4.5的值一樣,所以-7.5<y1<-2.5,也一定小于-2.5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的口袋里裝有只有顏色不同的黑、白兩種顏色的球共只,某學(xué)習(xí)小組做摸球?qū)嶒,將球攪勻后從中隨機摸出一個球記下顏色,再把它放回袋中,不斷重復(fù).下表是活動進(jìn)行中的一組統(tǒng)計數(shù)據(jù):

摸球的次數(shù)

摸到白球的次數(shù)

摸到白球的頻率

上表中的________;________

摸到白球的概率的估計值是________(精確到);

試估算口袋中黑、白兩種顏色的球各有多少只?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DABC內(nèi)一點,CD平分ACBBDCD,A=ABD,若AC=5BC=3,則BD的長為( 。

A. 1 B. C. D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是△ABC的中線,AB=AC,∠BAC=45°,過點CCEAB于點E,交AD于點F.試判斷AFCD之間的關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】自定義:在一個圖形上畫一條直線,若這條直線既平分該圖形的面積,又平分該圖形的周長,我們稱這條直線為這個圖形的等分積周線”.

1)如圖1,已知△ABC,AC≠BC,過點C能否畫出△ABC的一條等分積周線?若能,說出確定的方法,若不能,請說明理由.

2)如圖2,在四邊形ABCD中,∠B=C=90°,EF垂直平分AD,垂足為F,交BC于點E,已知AB=3BC=8CD=5.求證:直線EF為四邊形ABCD等分積周線;

3)如圖3,在△ABC中,AB=BC=6,AC=8,請你畫出△ABC的一條等分積周線”EF(要求:直線EF不過△ABC的頂點,交邊AC于點F,交邊BC于點E,并說明EF等分積周線的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD中,AB=3BC=5,在CD上任取一點E,連接BE,將BCE沿BE折疊,使點C恰好落在AD邊上的點F處,則CE的長為(

A.4B.5C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點,在直線的同側(cè),且,,,,現(xiàn)有點在直線上,并且滿足相似,則這樣的點的個數(shù)為( )

A. 3 B. 5 C. 6 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人民生活水平不斷提高,我市初中生帶手機現(xiàn)象也越來越多,為了了解家長對此現(xiàn)象的態(tài)度,某校數(shù)學(xué)課外活動小組隨機調(diào)查了若干名學(xué)生家長,并將調(diào)查結(jié)果進(jìn)行統(tǒng)計,得出如下所示的條形統(tǒng)計圖和扇形統(tǒng)計圖.

問:(1)這次調(diào)查的學(xué)生家長總?cè)藬?shù)為

2)請補全條形統(tǒng)計圖,并求出持很贊同態(tài)度的學(xué)生家長占被調(diào)查總?cè)藬?shù)的百分比.

3)求扇形統(tǒng)計圖中表示學(xué)生家長持無所謂態(tài)度的扇形圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,,,,相交于點

求邊的長;

如圖,將一個足夠大的直角三角板角的頂點放在菱形的頂點處,繞點左右旋轉(zhuǎn),其中三角板角的兩邊分別與邊,相交于點,,連接相交于點

判斷是哪一種特殊三角形,并說明理由;

旋轉(zhuǎn)過程中,當(dāng)點為邊的四等分點時,求的長.

查看答案和解析>>

同步練習(xí)冊答案