【題目】如圖,已知二次函數(shù)y=﹣ +bx+c的圖象經(jīng)過A(2,0)、B(0,﹣6)兩點.
(1)求這個二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)的對稱軸與x軸交于點C,連接BA、BC,求△ABC的面積.
【答案】
(1)
解:把A(2,0)、B(0,﹣6)代入y=﹣ +bx+c,
得:
解得 ,
∴這個二次函數(shù)的解析式為y=﹣ +4x﹣6
(2)
解:∵該拋物線對稱軸為直線x=﹣ =4,
∴點C的坐標為(4,0),
∴AC=OC﹣OA=4﹣2=2,
∴S△ABC= ×AC×OB= ×2×6=6
【解析】(1)二次函數(shù)圖象經(jīng)過A(2,0)、B(0,﹣6)兩點,兩點代入y=﹣ +bx+c,算出b和c,即可得解析式.(2)先求出對稱軸方程,寫出C點的坐標,計算出AC,然后由面積公式計算值.
【考點精析】根據(jù)題目的已知條件,利用二次函數(shù)的概念和二次函數(shù)的圖象的相關(guān)知識可以得到問題的答案,需要掌握一般地,自變量x和因變量y之間存在如下關(guān)系:一般式:y=ax2+bx+c(a≠0,a、b、c為常數(shù)),則稱y為x的二次函數(shù);二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點.
科目:初中數(shù)學 來源: 題型:
【題目】(9分)如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(-3,2),B(0,4),C(0,2).
(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C;平移△ABC,若A的對應(yīng)點A2的坐標為(0,4),畫出平移后對應(yīng)的△A2B2C2;
(2)若將△A1B1C繞某一點旋轉(zhuǎn)可以得到△A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關(guān)于x的一元二次方程x2﹣3x﹣k=0有兩個不相等的實數(shù)根.
(1)求k的取值范圍;
(2)請選擇一個k的負整數(shù)值,并求出方程的根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在四邊形ABCD中,∠A為直角,AB=16,BC=25,CD=15,AD=12,
(1)試說明BD⊥CD
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關(guān)于x的一元函數(shù)y=﹣2x+m和反比例函數(shù)y= 的圖象都經(jīng)過點A(﹣2,1).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求一次函數(shù)與反比例函數(shù)的另一個交點B的坐標;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.
(1)將這兩個三角形按圖①方式擺放,使點E落在AB上,DE的延長線交BC于點F.求證:BF+EF=DE;
(2)改變△ADE的位置,使DE交BC的延長線于點F(如圖②),則(1)中的結(jié)論還成立嗎?若成立,加以證明;若不成立,寫出此時BF、EF與DE之間的等量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將△ABO繞點A順時針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2在x軸上,依次進行下去….若點A(,0),B(0,2),則點B2018的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次科技活動中,小明進行了模擬雷達掃描實驗.如圖,表盤是△ABC,其中AB=AC,∠BAC=120°,在點A處有一束紅外光線AP,從AB開始,繞點A逆時針勻速旋轉(zhuǎn),每秒鐘旋轉(zhuǎn)15°,到達AC后立即以相同旋轉(zhuǎn)速度返回AB,到達后立即重復上述旋轉(zhuǎn)過程.小明通過實驗發(fā)現(xiàn),光線從AB處旋轉(zhuǎn)開始計時,旋轉(zhuǎn)1秒,此時光線AP交BC邊于點M,BM的長為(20 ﹣20)cm.
(1)求AB的長;
(2)從AB處旋轉(zhuǎn)開始計時,若旋轉(zhuǎn)6秒,此時光線AP與BC邊的交點在什么位置?若旋轉(zhuǎn)2014秒,交點又在什么位置?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com