【題目】探究:如圖①,在正方形ABCD中,點(diǎn)P在邊CD上(不與點(diǎn)C、D重合),連結(jié)BP.將△BCP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至△DCE,點(diǎn)B的對應(yīng)點(diǎn)是點(diǎn)D,旋轉(zhuǎn)的角度是 度.
應(yīng)用:將圖①中的BP延長交邊DE于點(diǎn)F,其它條件不變,如圖②.求∠BFE的度數(shù).
拓展:如圖②,若DP=2CP,BC=3,則四邊形ABED的面積是 .
【答案】(1)90°;(2).
【解析】
探究:根據(jù)旋轉(zhuǎn)的定義找到旋轉(zhuǎn)角即可;
應(yīng)用:由△BCP≌△DCE,可得∠CBP=∠CDE,由于∠CDE+∠E=90°,所以∠CBP+∠E=90°,所以∠BFE=90°;
拓展:由DC=BC=3,DP=2CP,可得CP=1,所以CE=1,所以四邊形ABED面積=正方形ABCD面積+△DCE面積,可求.
探究:根據(jù)旋轉(zhuǎn)角的定義可知∠DCE是旋轉(zhuǎn)角為90°,
故答案為90;
應(yīng)用:∵△BCP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至△DCE,
∴△BCP≌△DCE(SSS).
∴∠CBP=∠CDE.
∵∠CDE+∠E=90°,
∴∠CBP+∠E=90°.
∴∠BFE=90°;
拓展:∵DC=BC=3,DP=2CP,
∴CP=1.
∴CE=1.
所以四邊形ABED面積=正方形ABCD面積+△DCE面積=9+×1×3=10.5.
故答案為90;10.5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把按下列要求進(jìn)行操作:若指數(shù)為奇數(shù)則乘以,若指數(shù)為偶數(shù)則把它的指數(shù)除以2,如此繼續(xù)下去,則第幾次操作時(shí)的指數(shù)為4?第10次操作時(shí)的指數(shù)是多少?你有什么發(fā)現(xiàn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的材料:
如果函數(shù)y=f(x)滿足:對于自變量x的取值范圍內(nèi)的任意x1,x2,
(1)若,都有,則稱f(x)是增函數(shù);
(2)若,都有,則稱f(x)是減函數(shù).
例題:證明函數(shù)f(x)=是減函數(shù).
證明:設(shè),
∵,
∴.
∴.即.
∴.
∴函數(shù)是減函數(shù).
根據(jù)以上材料,解答下面的問題:
已知函數(shù)f(x)=(x<0),例如f(-1)==-3,f(-2)==-
(1)計(jì)算:f(-3)= ;
(2)猜想:函數(shù)f(x)=(x<0)是 函數(shù)(填“增”或“減”);
(3)請仿照例題證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一袋中裝有形狀大小都相同的四個(gè)小球,每個(gè)小球上各標(biāo)有一個(gè)數(shù)字,分別是1,4,7,8.現(xiàn)規(guī)定從袋中任取一個(gè)小球,對應(yīng)的數(shù)字作為一個(gè)兩位數(shù)的個(gè)位數(shù);然后將小球放回袋中并攪拌均勻,再任取一個(gè)小球,對應(yīng)的數(shù)字作為這個(gè)兩位數(shù)的十位數(shù).
(1)寫出按上述規(guī)定得到所有可能的兩位數(shù);
(2)從這些兩位數(shù)中任取一個(gè),求其算術(shù)平方根大于4且小于7的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用一條長為18cm的細(xì)繩圍成一個(gè)等腰三角形.
(1)如果腰長是底邊長的2倍,求三角形各邊的長;
(2)能圍成有一邊的長是4cm的等腰三角形嗎?若能,求出其他兩邊的長;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=ax+b與反比例函數(shù)y=(x>0)的圖像在第一象限交于A、B兩點(diǎn),點(diǎn)B坐標(biāo)為(4,2),連接OA、OB,過點(diǎn)B作BD⊥y軸,垂足為D,交OA于點(diǎn)C,且OC=CA.
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)根據(jù)圖像直接說出不等式ax+b-<0的解集為______;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△DEF中,AB∥DE,點(diǎn)A,F,C,D在同一直線上,AF=CD,∠AFE=∠BCD.
試說明:
(1)△ABC≌△DEF;
(2)BF∥EC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場購進(jìn)西裝30件,襯衫45件,共用了39000元,其中西裝的單價(jià)是襯衫的5倍。
(1)求西裝和襯衫的單價(jià)各為多少元?
(2)商場仍需要購買上面的兩種產(chǎn)品55件(每種產(chǎn)品的單價(jià)不變),采購部預(yù)算共支出32000元,財(cái)會算了一下,說:“如果你用這些錢共買這兩種產(chǎn)品,那么賬肯定算錯(cuò)了”請你用學(xué)過的方程知識解釋財(cái)會為什么會這樣說?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)E為矩形ABCD邊AD上一點(diǎn),點(diǎn)P,點(diǎn)Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P沿BE→ED→DC 運(yùn)動到點(diǎn)C停止,點(diǎn)Q沿BC運(yùn)動到點(diǎn)C停止,它們運(yùn)動的速度都是1/s,設(shè)P,Q出發(fā)t秒時(shí),△BPQ的面積為y,已知y與t的函數(shù)關(guān)系的圖形如圖2(曲線OM為拋物線的一部分),則下列結(jié)論::①AD=BE=5;②當(dāng)0<t≤5時(shí); ;③直線NH的解析式為y=-t+27;④若△ABE與△QBP相似,則t=秒. 其中正確的結(jié)論個(gè)數(shù)為( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com