【題目】某土特產(chǎn)公司組織20輛汽車裝運(yùn)甲、乙、丙三種土特產(chǎn)共120噸去外地銷售.按計(jì)劃20輛車都要裝運(yùn),每輛汽車只能裝運(yùn)同一種土特產(chǎn),且必須裝滿,根據(jù)下表提供的信息,解答以下問(wèn)題:
土特產(chǎn)品種 | 甲 | 乙 | 丙 |
每輛汽車運(yùn)載量(噸) | 8 | 6 | 5 |
每噸土特產(chǎn)獲利(百元) | 12 | 16 | 10 |
(1)設(shè)裝運(yùn)甲種土特產(chǎn)的車輛數(shù)為x,裝運(yùn)乙種土特產(chǎn)的車輛數(shù)為y,求y與x之間的函數(shù)關(guān)系式.
(2)如果裝運(yùn)每種土特產(chǎn)的車輛都不少于3輛,那么車輛的安排方案有幾種并寫出每種安排方案.
(3)若要使此次銷售獲利最大,應(yīng)采用(2)中哪種安排方案?并求出最大利潤(rùn)的值.
【答案】
(1)解:∵8x+6y+5(20﹣x﹣y)=120,
∴y=20﹣3x.
∴y與x之間的函數(shù)關(guān)系式為y=20﹣3x.
(2)解:由x≥3,y=20﹣3x≥3,即20﹣3x≥3可得3≤x≤5 ,
又∵x為正整數(shù),
∴x=3,4,5.
故車輛的安排有三種方案,即:
方案一:甲種3輛乙種11輛丙種6輛;
方案二:甲種4輛乙種8輛丙種8輛;
方案三:甲種5輛乙種5輛丙種10輛
(3)解:設(shè)此次銷售利潤(rùn)為W百元,
W=8x12+6(20﹣3x)16+5[20﹣x﹣(20﹣3x)]10=﹣92x+1920.
∵W隨x的增大而減小,又x=3,4,5
∴當(dāng)x=3時(shí),W最大=1644(百元)=16.44萬(wàn)元.
答:要使此次銷售獲利最大,應(yīng)采用(2)中方案一,即甲種3輛,乙種11輛,丙種6輛,最大利潤(rùn)為16.44萬(wàn)元.
【解析】(1)因?yàn)楣窘M織20輛汽車裝運(yùn)甲、乙、丙三種土特產(chǎn)共120噸去外地銷售,設(shè)裝運(yùn)甲種土特產(chǎn)的車輛數(shù)為x,裝運(yùn)乙種土特產(chǎn)的車輛數(shù)為y,則裝運(yùn)丙特產(chǎn)的車輛數(shù)為(20﹣x﹣y),且8x+6y+5(20﹣x﹣y)=120,整理即得y與x之間的函數(shù)關(guān)系式.(2)因?yàn)檠b運(yùn)每種土特產(chǎn)的車輛都不少于3輛,所以x≥3,y≥3,20﹣x﹣y≥3,結(jié)合(1)的答案,就可得到關(guān)于x的不等式組,又因x是正整數(shù),從而可求x的取值,進(jìn)而確定方案.(3)可設(shè)此次銷售利潤(rùn)為W百元,由表格可得W=8x12+6(20﹣3x)16+5[20﹣x﹣(20﹣3x)]10=﹣92x+1920,根據(jù)y隨x的變化規(guī)律,結(jié)合(2)中所求,就可確定使利潤(rùn)最大的方案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是正方形ABCD內(nèi)的一點(diǎn),連接CP,將線段CP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到線段CQ,連接BP,DQ.
(1)如圖a,求證:△BCP≌△DCQ;
(2)如圖,延長(zhǎng)BP交直線DQ于點(diǎn)E.
①如圖b,求證:BE⊥DQ;
②如圖c,若△BCP為等邊三角形,判斷△DEP的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中.
(1)把△ABC平移至A′的位置,使點(diǎn)A與A′對(duì)應(yīng),得到△A′B′C′;
(2)線段AA′與BB′的關(guān)系是: ;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)△ABC的頂點(diǎn)A、C的坐標(biāo)分別為(﹣4,5)、(﹣1,3).
(1)請(qǐng)?jiān)趫D中正確作出平面直角坐標(biāo)系;
(2)請(qǐng)作出△ABC關(guān)于y軸對(duì)稱的△A′B′C′;
(3)點(diǎn)B′的坐標(biāo)為 ,△A′B′C′的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,一次函數(shù)y=﹣2x+1的圖象與y軸交于點(diǎn)A.
(1)若點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)B在一次函數(shù)y= x+b的圖象上,求b的值,并在同一坐標(biāo)系中畫出該一次函數(shù)的圖象;
(2)求這兩個(gè)一次函數(shù)的圖象與y軸圍成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線l的同側(cè)有A,B,C三點(diǎn),如果A,B兩點(diǎn)確定的直線l1與B,C兩點(diǎn)確定的直線l2都與l平行,那么A,B,C三點(diǎn)在同一條直線上,理由是________________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)M,與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,求S△AOB .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正比例函數(shù)y=2x的圖象與一次函數(shù)y=kx+b的圖象交于點(diǎn)A(m,2),一次函數(shù)圖象經(jīng)過(guò)點(diǎn)B(﹣2,﹣1),與y軸的交點(diǎn)為C,與x軸的交點(diǎn)為D.
(1)求一次函數(shù)解析式;
(2)求C點(diǎn)的坐標(biāo);
(3)求△AOD的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com