【題目】在一次水災(zāi)中,大約有2.5×105個人無家可歸,假如一頂帳篷占地100米2,可以放置40個床位,為了安置所有無家可歸的人,需要多少頂帳篷?這些帳篷大約要占多少地方?估計你的學(xué)校的操場可安置多少人?要安置這些人,大約需要多少個這樣的操場?
【答案】為了安置所有無家可歸的人,需要6250頂帳篷,這些帳篷大約要占6.25×105米2,
估計我的學(xué)校的操場可安置2400人,要安置這些人,大約需要105個這樣的操場.
【解析】
試題分析:根據(jù)帳篷的數(shù)量=總?cè)藬?shù)÷每一個帳篷所容納的人數(shù);所占面積=帳篷數(shù)×一頂帳篷所占的面積,計算即可.
解:根據(jù)題意得
2.5×105÷40=6250頂帳篷,
6250×100=6.25×105米2,
需要根據(jù)操場的大小來計算,如:
我的學(xué)校的操場大約是6000米2,
×40=2400人,
2.5×105÷2400≈105個操場.
答:為了安置所有無家可歸的人,需要6250頂帳篷,這些帳篷大約要占6.25×105米2,
估計我的學(xué)校的操場可安置2400人,要安置這些人,大約需要105個這樣的操場.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A,B,C,D,E,F(xiàn)是邊長為1的正六邊形的頂點(diǎn),連接任意兩點(diǎn)均可得到一條線段.在連接兩點(diǎn)所得的所有線段中任取一條線段,取到長度為的線段的概率為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABDE中,C是BD邊的中點(diǎn).若AC平分∠BAE,∠ACE=90°,猜想線段AE、AB、DE的長度滿足的數(shù)量關(guān)系為并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】推理填空:
如圖,EF∥AD,∠1=∠2,∠BAC=70°.將求∠AGD的過程填寫完整.
因為EF∥AD,
所以∠2= .( )
又因為∠1=∠2,
所以∠1=∠3.( )
所以AB∥ .( )
所以∠BAC+ =180°( )
又因為∠BAC=70°,
所以∠AGD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖①、②,解答下面各題:
(1)圖①中,∠AOB=55°,點(diǎn)P在∠AOB內(nèi)部,過點(diǎn)P作PE⊥OA,PF⊥OB,垂足分別為E、F,求∠EPF的度數(shù)。
(2)圖②中,點(diǎn)P在∠AOB外部,過點(diǎn)P作PE⊥OA,PF⊥OB,垂足分別為E、F,那么∠P與∠O有什么關(guān)系?為什么?
(3)通過上面這兩道題,你能說出如果一個角的兩邊分別垂直于另一個角的兩邊,則這兩個角是什么關(guān)系?
(4)如果一個角的兩邊分別平行于另一個角的兩邊,則這兩個角是什么關(guān)系?(請畫圖說明結(jié)果,不需要過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索與研究:
方法1:如圖(a),對任意的符合條件的直角三角形繞其銳角頂點(diǎn)旋轉(zhuǎn)90°所得,所以
∠BAE=90°,且四邊形ACFD是一個正方形,它的面積和四邊形ABFE面積相等,而四邊形ABFE面積等于Rt△BAE和Rt△BFE的面積之和,根據(jù)圖示寫出證明勾股定理的過程;
方法2:如圖(b),是任意的符合條件的兩個全等的Rt△BEA和Rt△ACD拼成的,你能根據(jù)圖示再寫一種證明勾股定理的方法嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABD和∠BDC的平分線交于點(diǎn)E,BE的延長線交CD于點(diǎn)F,且∠1+∠2=90°.猜想∠2與∠3的關(guān)系并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com