【題目】如圖,二次函數(shù)y=ax2+bx(a≠0)的圖象經(jīng)過點A(1,4),對稱軸是直線x=﹣ ,線段AD平行于x軸,交拋物線于點D.在y軸上取一點C(0,2),直線AC交拋物線于點B,連結(jié)OA,OB,OD,BD.
(1)求該二次函數(shù)的解析式;
(2)求點B坐標(biāo)和坐標(biāo)平面內(nèi)使△EOD∽△AOB的點E的坐標(biāo);
(3)設(shè)點F是BD的中點,點P是線段DO上的動點,問PD為何值時,將△BPF沿邊PF翻折,使△BPF與△DPF重疊部分的面積是△BDP的面積的 ?
【答案】
(1)
解:∵y=ax2+bx(a≠0)的圖象經(jīng)過點A(1,4),且對稱軸是直線x=﹣ ,
∴ ,
解得: ,
∴二次函數(shù)的解析式為y=x2+3x
(2)
解:如圖1,
∵點A(1,4),線段AD平行于x軸,
∴D的縱坐標(biāo)為4,
∴4=x2+3x,
∴x1=﹣4,x2=1,
∴D(﹣4,4).
設(shè)直線AC的解析式為y=kx+b,由題意,得
,
解得: ,
∴y=2x+2;
當(dāng)2x+2=x2+3x時,
解得:x1=﹣2,x2=1(舍去).
∴y=﹣2.
∴B(﹣2,﹣2).
∴DO=4 ,BO=2 ,BD=2 ,OA= .
∴DO2=32,BO2=8,BD2=40,
∴DO2+BO2=BD2,
∴△BDO為直角三角形.
∵△EOD∽△AOB,
∴∠EOD=∠AOB, ,
∴∠AOB﹣∠AOD=∠EOD﹣∠AOD,
∴∠BOD=∠AOE=90°.
即把△AOB繞著O點順時針旋轉(zhuǎn)90°,OB落在OD上B′,OA落在OE上A1
∴A1(4,﹣1),
∴E(8,﹣2).
作△AOB關(guān)于x軸的對稱圖形,所得點E的坐標(biāo)為(2,﹣8).
∴當(dāng)點E的坐標(biāo)是(8,﹣2)或(2,﹣8)時,△EOD∽△AOB
(3)
解:由(2)知DO=4 ,BO=2 ,BD=2 ,∠BOD=90°.
若翻折后,點B落在FD的左下方,連接B′P與BD交于點H,連接B′D,如圖2.
S△HFP= S△BDP= S△DPF= S△B′PF=S△DHP=S△B′HF,
∴DH=HF,B′H=PH,
∴在平行四邊形B′FPD中,PD=B′F=BF= BD= ;
若翻折后,點B,D重合,S△HFP= S△BDP,不合題意,舍去.
若翻折后,點B落在OD的右上方,連接B′F交OD于點H,連接B′D,如圖3,
S△HFP= S△BDP= S△BPF= S△DPF= S△B′PF=S△DHF=S△B′HP
∴B′P=BP,B′F=BF,DH=HP,B′H=HF,
∴四邊形DFPB′是平行四邊形,
∴B′P=DF=BF,
∴B′P=BP=B′F=BF,
∴四邊形B′FBP是菱形,
∴FD=B′P=BP= BD= ,根據(jù)勾股定理,得
OP2+OB2=BP2,
∴(4 ﹣PD)2+(2 )2=( )2,
解得PD=3 ,PD=5 >4 (舍去),
綜上所述,PD= 或PD=3 時,將△BPF沿邊PF翻折,使△BPF與△DPF重疊部分的面積是△BDP的面積的 .
【解析】(1)運(yùn)用待定系數(shù)法和對稱軸的關(guān)系式求出a、b的即可;(2)由待定系數(shù)法求出直線AC的解析式,由拋物線的解析式構(gòu)成方程組就可以求出B點的坐標(biāo),由相似三角形的性質(zhì)及旋轉(zhuǎn)的性質(zhì)就可以得出E的坐標(biāo);(3)分情況討論當(dāng)點B落在FD的左下方,點B,D重合,點B落在OD的右上方,由三角形的面積公式和菱形的性質(zhì)的運(yùn)用就可以求出結(jié)論.
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)的性質(zhì)的相關(guān)知識,掌握增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E為CD的中點,F(xiàn)為BE上的一點,連結(jié)CF并延長交AB于點M,MN⊥CM交射線AD于點N.
(1)當(dāng)F為BE中點時,求證:AM=CE;
(2)若 =2,求 的值;
(3)若 =n,當(dāng)n為何值時,MN∥BE?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,F(xiàn)是正方形ABCD的邊CD上的一個動點,BF的垂直平分線交對角線AC于點E,連接BE,F(xiàn)E,則∠EBF的度數(shù)是( )
A.45°
B.50°
C.60°
D.不確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九(1)班同學(xué)在上學(xué)期的社會實踐活動中,對學(xué)校旁邊的山坡護(hù)墻和旗桿進(jìn)行了測量.
(1)如圖1,第一小組用一根木條CD斜靠在護(hù)墻上,使得DB與CB的長度相等,如果測量得到∠CDB=38°,求護(hù)墻與地面的傾斜角α的度數(shù).
(2)如圖2,第二小組用皮尺量的EF為16米(E為護(hù)墻上的端點),EF的中點離地面FB的高度為1.9米,請你求出E點離地面FB的高度.
(3)如圖3,第三小組利用第一、第二小組的結(jié)果,來測量護(hù)墻上旗桿的高度,在點P測得旗桿頂端A的仰角為45°,向前走4米到達(dá)Q點,測得A的仰角為60°,求旗桿AE的高度(精確到0.1米).
備用數(shù)據(jù):tan60°=1.732,tan30°=0.577, =1.732, =1.414.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、B分別在x,y軸上,點D在第一象限內(nèi),DC⊥x軸于點C,AO=CD=2,AB=DA= ,反比例函數(shù)y= (k>0)的圖象過CD的中點E.
(1)求證:△AOB≌△DCA;
(2)求k的值;
(3)△BFG和△DCA關(guān)于某點成中心對稱,其中點F在y軸上,是判斷點G是否在反比例函數(shù)的圖象上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=8,BC=6,D是AB的中點,點E在邊AC上,將△ADE沿DE翻折,使得點A落在點A'處,當(dāng)A'E⊥AC時,A'B= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,動點P從點A出發(fā),沿半圓AB勻速運(yùn)動到達(dá)終點B,若以時間t為自變量,扇形OAP的面積S為函數(shù)圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com