【題目】正方形ABCD的邊長為3,點(diǎn)E在邊CD的延長線上,連接BE交邊AD于F,如果DE=1,那么AF= .
【答案】
【解析】解:依照題意畫出圖形,如圖所示.
∵四邊形ABCD為正方形,
∴∠A=∠ADC=90°,AB∥CD,
∴∠EDF=180°﹣∠ADC=90°=∠A,∠ABF=∠DEF,
∴△ABF∽△DEF,
∴ = =3,
∵AF+DF=AD=3,
∴AF= AD= .
所以答案是: .
【考點(diǎn)精析】掌握正方形的性質(zhì)和相似三角形的判定與性質(zhì)是解答本題的根本,需要知道正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“綜合與實(shí)踐”學(xué)習(xí)活動(dòng)準(zhǔn)備制作一組三角形,記這些三角形的三邊分別為a,b,c,并且這些三角形三邊的長度為大于1且小于5的整數(shù)個(gè)單位長度.
(1)用記號(hào)(a,b,c)(a≤b≤c)表示一個(gè)滿足條件的三角形,如(2,3,3)表示邊長分別為2,3,3個(gè)單位長度的一個(gè)三角形.請(qǐng)列舉出所有滿足條件的三角形.
(2)用直尺和圓規(guī)作出三邊滿足a<b<c的三角形(用給定的單位長度,不寫作法,保留作圖痕跡).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx(a≠0)的圖象經(jīng)過點(diǎn)A(1,4),對(duì)稱軸是直線x=﹣ ,線段AD平行于x軸,交拋物線于點(diǎn)D.在y軸上取一點(diǎn)C(0,2),直線AC交拋物線于點(diǎn)B,連結(jié)OA,OB,OD,BD.
(1)求該二次函數(shù)的解析式;
(2)求點(diǎn)B坐標(biāo)和坐標(biāo)平面內(nèi)使△EOD∽△AOB的點(diǎn)E的坐標(biāo);
(3)設(shè)點(diǎn)F是BD的中點(diǎn),點(diǎn)P是線段DO上的動(dòng)點(diǎn),問PD為何值時(shí),將△BPF沿邊PF翻折,使△BPF與△DPF重疊部分的面積是△BDP的面積的 ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2+2bx+c與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的右側(cè)),且與y軸正半軸交于點(diǎn)C,已知A(2,0)
(1)當(dāng)B(﹣4,0)時(shí),求拋物線的解析式;
(2)O為坐標(biāo)原點(diǎn),拋物線的頂點(diǎn)為P,當(dāng)tan∠OAP=3時(shí),求此拋物線的解析式;
(3)O為坐標(biāo)原點(diǎn),以A為圓心OA長為半徑畫⊙A,以C為圓心, OC長為半徑畫圓⊙C,當(dāng)⊙A與⊙C外切時(shí),求此拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將拋物線y=x2﹣4x+4沿y軸向下平移9個(gè)單位,所得新拋物線與x軸正半軸交于點(diǎn)B,與y軸交于點(diǎn)C,頂點(diǎn)為D.求:(1)點(diǎn)B、C、D坐標(biāo);(2)△BCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=4,D為BC上一點(diǎn),CD=2,且△ADC與△ABD的面積比為1:3;
(1)求證:△ADC∽△BAC;
(2)當(dāng)AB=8時(shí),求sinB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊EF在△ABC的邊BC上,頂點(diǎn)D、G分別在邊AB、AC上,已知BC=6,△ABC的面積為9,則正方形DEFG的面積為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著科技與經(jīng)濟(jì)的發(fā)展,中國廉價(jià)勞動(dòng)力的優(yōu)勢(shì)開始逐漸消失,而作為新興領(lǐng)域的機(jī)器人產(chǎn)業(yè)則迅速崛起,機(jī)器人自動(dòng)化線的市場也越來越大,并且逐漸成為自動(dòng)化生產(chǎn)線的主要方式,某化工廠要在規(guī)定時(shí)間內(nèi)搬運(yùn)1200千元化工原料.現(xiàn)有A,B兩種機(jī)器人可供選擇,已知A型機(jī)器人比B型機(jī)器人每小時(shí)多搬運(yùn)30千克,A型機(jī)器人搬運(yùn)900千克所用的時(shí)間與B型機(jī)器人搬運(yùn)600千克所用的時(shí)間相等.
(1)兩種機(jī)器人每小時(shí)分別搬運(yùn)多少化工原料?
(2)該工廠原計(jì)劃同時(shí)使用這兩種機(jī)器人搬運(yùn),工作一段時(shí)間后,A型機(jī)器人又有了新的搬運(yùn)任務(wù),但必須保證這批化工原料在11小時(shí)內(nèi)全部搬運(yùn)完畢.求:A型機(jī)器人至少工作幾個(gè)小時(shí),才能保證這批化工原料在規(guī)定的時(shí)間內(nèi)完成.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的邊AB:BC=3:2,點(diǎn)A(3,0),B(0,6)分別在x軸、y軸上,反比例函數(shù)y= (x>0)的圖像經(jīng)過點(diǎn)D,且與邊BC交于點(diǎn)E,則點(diǎn)E的坐標(biāo)為.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com