【題目】如圖,拋物線y=ax2+bx+c(a≠0)的開口向上,與x軸交點(diǎn)的橫坐標(biāo)分別為﹣1、3,則下列說法錯(cuò)誤的是(
A.對(duì)稱軸是直線x=1
B.方程ax2+bx+c=0的解是x1=﹣1,x2=3
C.當(dāng)x<1,y隨x的增大而增大
D.當(dāng)﹣1<x<3時(shí),y<0

【答案】C
【解析】解:∵拋物線與x軸交點(diǎn)的橫坐標(biāo)分別為﹣1、3, ∴對(duì)稱軸是直線x= =1,方程ax2+bx+c=0的解是x1=﹣1,x2=3,故A、B正確;
∵拋物線y=ax2+bx+c(a≠0)的開口向上,
∴當(dāng)x<1,y隨x的增大而減小,故C錯(cuò)誤;
∵當(dāng)﹣1<x<3時(shí),拋物線在x軸的下面,
∴y<0,故D正確,
故選C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的性質(zhì)的相關(guān)知識(shí),掌握增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減小;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小,以及對(duì)拋物線與坐標(biāo)軸的交點(diǎn)的理解,了解一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒有交點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一個(gè)等腰Rt△ABC對(duì)折,使∠A與∠B重合,展開后得折痕CD,再將∠A折疊,使C落在AB上的點(diǎn)F處,展開后,折痕AE交CD于點(diǎn)P,連接PF、EF,下列結(jié)論:①tan∠CAE= ﹣1;②圖中共有4對(duì)全等三角形;③若將△PEF沿PF翻折,則點(diǎn)E一定落在AB上;④PC=EC;⑤S四邊形DFEP=SAPF . 正確的個(gè)數(shù)是(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線l與拋物線y=mx2+nx相交于A(1,3 ),B(4,0)兩點(diǎn).

(1)求出拋物線的解析式;
(2)在坐標(biāo)軸上是否存在點(diǎn)D,使得△ABD是以線段AB為斜邊的直角三角形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說明理由;
(3)點(diǎn)P是線段AB上一動(dòng)點(diǎn),(點(diǎn)P不與點(diǎn)A、B重合),過點(diǎn)P作PM∥OA,交第一象限內(nèi)的拋物線于點(diǎn)M,過點(diǎn)M作MC⊥x軸于點(diǎn)C,交AB于點(diǎn)N,若△BCN、△PMN的面積SBCN、SPMN滿足SBCN=2SPMN , 求出 的值,并求出此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】黔東南州某中學(xué)為了解本校學(xué)生平均每天的課外學(xué)習(xí)實(shí)踐情況,隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果分為A,B,C,D四個(gè)等級(jí),設(shè)學(xué)生時(shí)間為t(小時(shí)),A:t<1,B:1≤t<1.5,C:1.5≤t<2,D:t≥2,根據(jù)調(diào)查結(jié)果繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中信息解答下列問題:

(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)本次抽樣調(diào)查中,學(xué)習(xí)時(shí)間的中位數(shù)落在哪個(gè)等級(jí)內(nèi)?
(3)表示B等級(jí)的扇形圓心角α的度數(shù)是多少?
(4)在此次問卷調(diào)查中,甲班有2人平均每天課外學(xué)習(xí)時(shí)間超過2小時(shí),乙班有3人平均每天課外學(xué)習(xí)時(shí)間超過2小時(shí),若從這5人中任選2人去參加座談,試用列表或化樹狀圖的方法求選出的2人來自不同班級(jí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+2與x軸、y軸分別交于點(diǎn)A(﹣1,0)和點(diǎn)B,與反比例函數(shù)y= 的圖象在第一象限內(nèi)交于點(diǎn)C(1,n).
(1)求k的值;
(2)求反比例函數(shù)的解析式;
(3)過x軸上的點(diǎn)D(a,0)作平行于y軸的直線l(a>1),分別與直線AB和雙曲線y= 交于點(diǎn)P、Q,且PQ=2QD,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,∠A=30°.
(1)用尺規(guī)作圖作AB邊上的垂直平分線DE,交AC于點(diǎn)D,交AB于點(diǎn)E.(保留作圖痕跡,不要求寫作法和證明)
(2)連接BD,求證:DE=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,將△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)n度后,得到△EDC,此時(shí),點(diǎn)D在AB邊上,斜邊DE交AC邊于點(diǎn)F,則n的大小和圖中陰影部分的面積分別為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6cm,BC=8cm.如果點(diǎn)E由點(diǎn)B出發(fā)沿BC方向向點(diǎn)C勻速運(yùn)動(dòng),同時(shí)點(diǎn)F由點(diǎn)D出發(fā)沿DA方向向點(diǎn)A勻速運(yùn)動(dòng),它們的速度分別為2cm/s和1cm/s.FQ⊥BC,分別交AC、BC于點(diǎn)P和Q,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<4).

(1)連結(jié)EF、DQ,若四邊形EQDF為平行四邊形,求t的值;
(2)連結(jié)EP,設(shè)△EPC的面積為ycm2 , 求y與t的函數(shù)關(guān)系式,并求y的最大值;
(3)若△EPQ與△ADC相似,請(qǐng)直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一筆直的海岸線l上有AB兩個(gè)觀測(cè)站,A在B的正東方向,AB=2(單位:km).有一艘小船在點(diǎn)P處,從A測(cè)得小船在北偏西60°的方向,從B測(cè)得小船在北偏東45°的方向.

(1)求點(diǎn)P到海岸線l的距離;
(2)小船從點(diǎn)P處沿射線AP的方向航行一段時(shí)間后,到點(diǎn)C處,此時(shí),從B測(cè)得小船在北偏西15°的方向.求點(diǎn)C與點(diǎn)B之間的距離.(上述兩小題的結(jié)果都保留根號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案