【題目】如圖1,拋物線:與直線l:交于x軸上的一點(diǎn)A,和另一點(diǎn)
求拋物線的解析式;
點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn)點(diǎn)P在A,B兩點(diǎn)之間,但不包括A,B兩點(diǎn)于點(diǎn)M,軸交AB于點(diǎn)N,求MN的最大值;
如圖2,將拋物線繞頂點(diǎn)旋轉(zhuǎn)后,再作適當(dāng)平移得到拋物線,已知拋物線的頂點(diǎn)E在第一象限的拋物線上,且拋持線與拋物線交于點(diǎn)D,過點(diǎn)D作軸交拋物線于點(diǎn)F,過點(diǎn)E作軸交拋物線于點(diǎn)G,是否存在這樣的拋物線,使得四邊形DFEG為菱形?若存在,請求E點(diǎn)的橫坐標(biāo);若不存在,請說明理由.
【答案】(1);(2);(3)點(diǎn)的橫坐標(biāo)為時(shí),四邊形DFEG為菱形
【解析】
求直線l與x軸交點(diǎn)A坐標(biāo)、B坐標(biāo),用待定系數(shù)法求拋物線的解析式.
延長PN交x軸于點(diǎn)H,設(shè)點(diǎn)P橫坐標(biāo)為m,由軸可得點(diǎn)N、H橫坐標(biāo)也為m,即能用m表示PN、NH、AH的長.由及對頂角可得發(fā)現(xiàn)在中,MN與PN比值即為,故先在中求的值,再代入,即得到MN與m的函數(shù)關(guān)系式,配方即求得MN最大值.
設(shè)點(diǎn),所以可設(shè)拋物線頂點(diǎn)式為令兩拋物線解析式列得關(guān)于x的方程,解得兩拋物線的另一交點(diǎn)D即為拋物線的頂點(diǎn),故DG,且求得DF平行且等于GE,即四邊形DFEG首先一定是平行四邊形.由DFEG為菱形可得,故此時(shí)span>為等邊三角形.利用特殊三角函數(shù)值作為等量關(guān)系列方程,即求得e的值.
解:直線l:交x軸于點(diǎn)A,
,解得:,
,
點(diǎn)在直線l上,
,
,
拋物線:經(jīng)過點(diǎn)A、B,
,
解得:,
拋物線的解析式為,
如圖1,延長PN交x軸于點(diǎn)H,
,
設(shè) ,
軸,
,
,,
,,
中,,
,
于點(diǎn)M,
,
,
,
中,,
,
的最大值為,
存在滿足條件的拋物線,使得四邊形DFEG為菱形,
如圖2,連接DE,過點(diǎn)E作于點(diǎn)Q,
,
拋物線頂點(diǎn)為 ,
設(shè) ,
拋物線頂點(diǎn)式為,
當(dāng),
解得:,,
兩拋物線另一交點(diǎn)為拋物線頂點(diǎn),
軸,軸,
,,
四邊形DFEG是平行四邊形,
若DFEG為菱形,則,
由拋物線對稱性可得:,
,
是等邊三角形,
,
,
解得:舍去,,
點(diǎn)的橫坐標(biāo)為時(shí),四邊形DFEG為菱形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象過點(diǎn)(﹣2,0),對稱軸為直x=1線,下列結(jié)論中:①abc>0;②若A(x1,m),B(x2,m)是拋物線上的兩點(diǎn),當(dāng)x=x1+x2時(shí),y=c;③若方程a(x+2)(4﹣x)=﹣2的兩根為x1,x2,且x1<x2,則﹣2<x1<x2<4;④(a+c)2>b2;一定正確的是______(填序號即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式組
請結(jié)合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得______________________;
(Ⅱ)解不等式②,得____________________;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:
(Ⅳ)原不等式組的解集為_______________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)域?yàn)轫憫?yīng)“綠水青山就是金山銀山”的號召,加強(qiáng)了綠化建設(shè).為了解該區(qū)域群眾對綠化建設(shè)的滿意程度,某中學(xué)數(shù)學(xué)興趣小組在該區(qū)域的甲、乙兩個(gè)片區(qū)進(jìn)行了調(diào)查,得到如圖不完整統(tǒng)計(jì)圖.請結(jié)合圖中信息,解決下列問題.
(1)此次調(diào)查中接受調(diào)查的人數(shù)為______人,其中“非常滿意”的人數(shù)為______人;“一般”部分所在扇形統(tǒng)計(jì)圖的圓心角度數(shù)為_______.
(2)興趣小組準(zhǔn)備從“不滿意”的位群眾中隨機(jī)選擇位進(jìn)行回訪,已知這位群眾中有位來自甲片區(qū),另位來自乙片區(qū),請用畫樹狀圖或列表的方法求出選擇的群眾都來自甲片區(qū)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(3,2)、(﹣1,0),若將線段BA繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BA′,則點(diǎn)A′的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“低碳生活,綠色出行”,2017年1月,某公司向深圳市場新投放共享單車640輛.
(1)若1月份到4月份新投放單車數(shù)量的月平均增長率相同,3月份新投放共享單車1000輛.請問該公司4月份在深圳市新投放共享單車多少輛?
(2)考慮到自行車市場需求不斷增加,某商城準(zhǔn)備用不超過70000元的資金再購進(jìn)A,B兩種規(guī)格的自行車100輛,已知A型的進(jìn)價(jià)為500元/輛,售價(jià)為700元/輛,B型車進(jìn)價(jià)為1000元/輛,售價(jià)為1300元/輛。假設(shè)所進(jìn)車輛全部售完,為了使利潤最大,該商城應(yīng)如何進(jìn)貨?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,BC=2,點(diǎn)P,Q均為AB邊上的動(dòng)點(diǎn),BE⊥CP,垂足為E,則QD+QE的最小值為( )
A.2B.3C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點(diǎn)和兩點(diǎn),記一次函數(shù)的圖象與坐標(biāo)軸的交點(diǎn)分別為,連接
(1)求與的值;
(2)求證:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系中的點(diǎn)和圖形,給出如下定義:若圖形上存在兩個(gè)點(diǎn),使得是邊長為2的等邊三角形,則稱點(diǎn)是圖形的一個(gè)“和諧點(diǎn)”.
已知直線與軸交于點(diǎn),與軸交于點(diǎn)的半徑為.
(1)若,在點(diǎn)中,直線的和諧點(diǎn)是___________;
(2)若上恰好存在2個(gè)直線的和諧點(diǎn),求的取值范圍;
(3)若,線段上存在的和諧點(diǎn),直接寫出的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com