【題目】如圖,在平面直角坐標(biāo)系中,已知點A(3,4),將OA繞坐標(biāo)原點O逆時針轉(zhuǎn)90°至OA/,則點A/的坐標(biāo)是_______.
【答案】(-4,3)
【解析】
過點A作AB⊥x軸于B,過點A′作A′B′⊥x軸于B′,根據(jù)旋轉(zhuǎn)的性質(zhì)可得OA=OA′,利用同角的余角相等求出∠OAB=∠A′OB′,然后利用“角角邊”證明△AOB和△OA′B′全等,根據(jù)全等三角形對應(yīng)邊相等可得OB′=AB,A′B′=OB,然后寫出點A′的坐標(biāo)即可.
解:如圖,過點A作AB⊥x軸于B,過點A′作A′B′⊥x軸于B′,
∵OA繞坐標(biāo)原點O逆時針旋轉(zhuǎn)90°至OA′,
∴OA=OA′,∠AOA′=90°,
∵∠A′OB′+∠AOB=90°,∠AOB+∠OAB=90°,
∴∠OAB=∠A′OB′,
在△AOB和△OA′B′中,
,
∴△AOB≌△OA′B′(AAS),
∴OB′=AB=4,A′B′=OB=3,
∴點A′的坐標(biāo)為(-4,3).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中,的頂點均在格點上,請在所給直角坐標(biāo)系中按要求畫圖和解答下列問題:
以原點為對稱中心,畫出的中心對稱圖形.
以原點為位似中心,在原點的另一側(cè)畫出的位似三角形,與的位似比為;
的面積________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大學(xué)生王強積極響應(yīng)“自主創(chuàng)業(yè)”的號召,準(zhǔn)備投資銷售一種進價為每件40元
的小家電.通過試營銷發(fā)現(xiàn),當(dāng)銷售單價在40元至90元之間(含40元和90元)時,每月的銷售量y(件)
與銷售單價x(元)之間的關(guān)系可近似地看作一次函數(shù),其圖象如圖所示.
(1)求y與x的函數(shù)關(guān)系式.
(2)設(shè)王強每月獲得的利潤為p(元),求p與x之間的函數(shù)關(guān)系式;如果王強想要每月獲得2400元的
利潤,那么銷售單價應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,拋物線的頂點為M,平行于x軸的直線與該拋物線交于點A,B(點A在點B左側(cè)),根據(jù)對稱性△AMB恒為等腰三角形,我們規(guī)定:當(dāng)△AMB為直角三角形時,就稱△AMB為該拋物線的“完美三角形”.
(1)①如圖2,求出拋物線的“完美三角形”斜邊AB的長;
②拋物線與的“完美三角形”的斜邊長的數(shù)量關(guān)系是 ;
(2)若拋物線的“完美三角形”的斜邊長為4,求a的值;
(3)若拋物線的“完美三角形”斜邊長為n,且的最大值為-1,求m,n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過網(wǎng)格點A、B、C,請在網(wǎng)格中進行下列操作:
(1)請在圖中確定該圓弧所在圓心D點的位置,D點坐標(biāo)為 ;
(2)連接AD、CD,則⊙D的半徑為 ;扇形DAC的圓心角度數(shù)為 ;
(3)若扇形DAC是某一個圓錐的側(cè)面展開圖,求該圓錐的底面半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為5的⊙A中,弦BC,ED所對的圓心角分是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,則圓心A到弦BC的距離等于( 。
A.B.C.4D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC⊥BD,且AC=8,BD=4,各邊中點分別為A1、B1、C1、D1,順次連接得到四邊形A1B1C1D1,再取各邊中點A2、B2、C2、D2,順次連接得到四邊形A2B2C2D2,…,依此類推,這樣得到四邊形AnBnCnDn,則四邊形AnBnCnDn的面積為( )
A. B. C. D. 不確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l:y=﹣x+8交x軸于點E,點A為x軸上的一個動點(點A不與點E重合),在直線l上取一點B(點B在x軸上方),使BE=5AE,連接AB,以AB為邊沿順時針方向作正方形ABCD,連結(jié)OB,以OB為直徑作⊙P.
(1)當(dāng)點A在點E右側(cè)時.
①若點B剛好落在y軸上,則線段BE的長為 ,點D的坐標(biāo)為 .
②若點A的坐標(biāo)為(9,0),求正方形ABCD的邊長.
(2)⊙P與正方形ABCD的邊相切于點B,求點B的坐標(biāo).
(3)點Q為⊙P與直線BE的交點,連接CQ,當(dāng)CQ平分∠BCD時,點B的坐標(biāo)為 .(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OP1A1B1、A1P2A2B2、A2P3A3B3、……、An-1PnAnBn都是正方形,對角線OA1、A1A2、A2A3、……、An-1An都在y軸上(n≥2),點P1(x1,y1),點P2(x2,y2),……,點Pn(xn,yn)在反比例函數(shù)y= (x>0)的圖象上,已知B1(-1,1)則反比例函數(shù)解析式為( )
A. y=B. y=C. y=D. y=
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com