【題目】如圖,點E是∠AOB的平分線上一點,ECOA,EDOB,垂足分別為C、D,連接C、D.

(1)求證:OC=OD;

(2)請確定射線OE與線段CD 的位置關系,并說明理由

【答案】見解析

【解析】試題分析:(1)由已知條件易得∠EDO=∠ECO=90°,DE=CE,從而得到∠EDC=∠ECD,進一步得到∠ODC=∠OCD,最后可由等邊對等角得到OC=OD(也可通過證△ODE≌△OCE來證明OC=OD);

(2)由(1)可知OC=OD,DE=CE,從而可證得OECD的垂直平分線得到結論.

試題解析:(1)∵E是∠AOB的平分線上一點,ECOA,EDOB

∴ DE=CE,∠EDO=∠ECO=90°,

∴∠EDC=∠ECD,

∴∠EDO-∠EDC=∠ECO-∠ECD,即∠ODC=∠OCD,

∴OC=OD.

(2) 射線OE垂直平分線段CD,理由如下

(1)可得:DE=CE,OC=OD

E和點O都在線段CD的垂直平分線上,

射線OE垂直平分線段CD.

射線OE與線段CD的位置關系是互相垂直.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,折疊矩形ABCD的一邊AD,使點D落在BC邊的點F處,已知折痕AE=5cm, 且tanEFC=,那么矩形ABCD的周長_____________cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一個正多邊形的每一個外角都是30°,則這個正多邊形的邊數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2016山東濰坊第21題)正方形ABCD內接于⊙O,如圖所示,在劣弧上取一點E,連接DE、BE,過點D作DF∥BE交⊙O于點F,連接BF、AF,且AF與DE相交于點G,求證:

(1)四邊形EBFD是矩形;

(2)DG=BE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CAAB,垂足為點A,射線BMAB,垂足為點B,AB=12cm,AC=6cm.動點EA點出發(fā)以3cm/s沿射線AN運動,動點D在射線BM上,隨著E點運動而運動,始終保持ED=CB.當點E經過______s時,△DEB與△BCA全等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△AOB的頂點O為坐標原點,點A的坐標為(4,0),點B的坐標為(0,1),點C為邊AB的中點,正方形OBDE的頂點E在x軸的正半軸上,連接CO,CD,CE.

(1)線段OC的長為 ;

(2)求證:△CBD≌△COE;

(3)將正方形OBDE沿x軸正方向平移得到正方形O1B1D1E1,其中點O,B,D,E的對應點分別為點O1,B1,D1,E1,連接CD,CE,設點E的坐標為(a,0),其中a≠2,△CD1E1的面積為S.

①當1<a<2時,請直接寫出S與a之間的函數(shù)表達式;

②在平移過程中,當S=時,請直接寫出a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2016山東濰坊第24題)如圖,在菱形ABCD中,AB=2,∠BAD=60°,過點D作DE⊥AB于點E,DF⊥BC于點F.

(1)如圖1,連接AC分別交DE、DF于點M、N,求證:MN=AC;

(2)如圖2,將△EDF以點D為旋轉中心旋轉,其兩邊DE′、DF′分別與直線AB、BC相交于點G、P,連接GP,當△DGP的面積等于3時,求旋轉角的大小并指明旋轉方向.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A、D、C、F在同一條直線上,AB=DEBC=EF,要使△ABC≌△DEF,還需要添加一個條件是( )

A. ∠BCA=∠F B. ∠B=∠E C. BC∥EF D. ∠A=∠EDF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,以AB為直徑的⊙O分別于BC,AC相交于點D,E,BD=CD,過點D作⊙O的切線交邊AC于點F.

(1)求證:DF⊥AC;

(2)若⊙O的半徑為5,∠CDF=30°,求的長(結果保留π).

查看答案和解析>>

同步練習冊答案