【題目】在平面直角坐標(biāo)系xOy中,對(duì)于任意三點(diǎn)A,B,C矩面積,給出如下定義:

水平底”a:任意兩點(diǎn)橫坐標(biāo)差的最大值,鉛垂高”h:任意兩點(diǎn)縱坐標(biāo)差的最大值,則矩面積”S=ah

例如:三點(diǎn)坐標(biāo)分別為A12),B﹣3,1),C2﹣2),則水平底”a=5,鉛垂高”h=4,矩面積”S=ah=20

1)已知點(diǎn)A1,2),B﹣3,1),P0,t).

①若AB,P三點(diǎn)的矩面積12,求點(diǎn)P的坐標(biāo);

②直接寫(xiě)出AB,P三點(diǎn)的矩面積的最小值.

2)已知點(diǎn)E4,0),F0,2),Mm,4m),Nn, ),其中m0n0

①若EF,M三點(diǎn)的矩面積8,求m的取值范圍;

②直接寫(xiě)出E,FN三點(diǎn)的矩面積的最小值及對(duì)應(yīng)n的取值范圍.

【答案】(1)①點(diǎn)P 的坐標(biāo)為(0,﹣1);②A,B,P三點(diǎn)的“矩面積”的最小值為4;

(2)①∴0<m≤;②E,F(xiàn),N三點(diǎn)的“矩面積”的最小值為16,此時(shí)n的取值范圍為4≤n≤8.

【解析】試題分析:1)①首先由題意:a=4,然后分別從①當(dāng)t2時(shí),h=t-1,當(dāng)t1時(shí),h=2-t,去分析求解即可求得答案;
②首先根據(jù)題意得:h的最小值為:1,繼而求得AB,P三點(diǎn)的“矩面積”的最小值.
2)①由EF,M三點(diǎn)的“矩面積”的最小值為8,可得a=4,h=2,即可得,繼而求得m的取值范圍;

②分別從當(dāng)n≤4時(shí),a=4h=,當(dāng)4n8時(shí),a=n,h=,,當(dāng)n≥8時(shí),a=nh=2,去分析求解即可求得答案;

試題解析:

解:(1)由題意:a=4

①當(dāng)t2時(shí),h=t﹣1,

4t﹣1=12,可得t=4,故點(diǎn)P的坐標(biāo)為(0,4);

當(dāng)t1時(shí),h=2﹣t,

42﹣t=12,可得t=﹣1,故點(diǎn)P 的坐標(biāo)為(0,﹣1);

②∵根據(jù)題意得:h的最小值為:1

A,B,P三點(diǎn)的矩面積的最小值為4;

2①∵E,F,M三點(diǎn)的矩面積8,

a=4,h=2,

0≤m≤

m0,

0m≤;

②∵當(dāng)n≤4時(shí),a=4h=,此時(shí)S=ah=

∴當(dāng)n=4時(shí),取最小值,S=16;

當(dāng)4n8時(shí),a=n,h=,此時(shí)S=ah=16

當(dāng)n≥8時(shí),a=n,h=2,此時(shí)S=ah=2n,

∴當(dāng)n=8時(shí),取最小值,S=16

E,FN三點(diǎn)的矩面積的最小值為16,此時(shí)n的取值范圍為4≤n≤8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有這樣一對(duì)數(shù):一個(gè)數(shù)的數(shù)字排列完全顛倒過(guò)來(lái)就變成另一個(gè)數(shù),簡(jiǎn)單地說(shuō)就是順序相反的兩個(gè)數(shù),我們把這樣的一對(duì)數(shù)互稱(chēng)為反序數(shù).比如:68的反序數(shù)是86,235的反序數(shù)是532,4056的反序數(shù)是6504.根據(jù)以上閱讀材料,回答下列問(wèn)題:

(1)已知一個(gè)三位數(shù),其數(shù)位上的數(shù)字為連續(xù)的三個(gè)自然數(shù),請(qǐng)寫(xiě)出滿(mǎn)足條件的一對(duì)反序數(shù) ,并求出原三位數(shù)與其反序數(shù)之差的絕對(duì)值 ;

(2)如果一個(gè)兩位數(shù)等于其反序數(shù)與1的平均數(shù),求這個(gè)兩位數(shù);

(3)若一個(gè)兩位數(shù)在其中間插入一個(gè)數(shù)字,為整數(shù)),得到的這個(gè)三位數(shù)是原來(lái)兩位數(shù)的9倍,請(qǐng)求出滿(mǎn)足條件的兩位數(shù)的反序數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△OAB是以正多邊形相鄰的兩個(gè)頂點(diǎn)A,B與它的中心O為頂點(diǎn)的三角形,若△OAB的一個(gè)內(nèi)角為70°,則該正多邊形的邊數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列事件是確定事件的是( )

A. 射擊運(yùn)動(dòng)員只射擊1次,就命中靶心

B. 打開(kāi)電視,正在播放新聞

C. 任意一個(gè)三角形,它的內(nèi)角和等于180°

D. 拋一枚質(zhì)地均勻的正方體骰子,朝上一面的點(diǎn)數(shù)為6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了解七年級(jí)學(xué)生最喜愛(ài)的球類(lèi)運(yùn)動(dòng)情況,從中隨機(jī)抽取部分學(xué)生進(jìn)行調(diào)查統(tǒng)計(jì),調(diào)查項(xiàng)目為籃球、乒乓球、足球和排球(每個(gè)被抽查的學(xué)生必須選擇且只能選擇其中一個(gè)調(diào)查項(xiàng)目),對(duì)調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖:

根據(jù)以上統(tǒng)計(jì)圖提供的信息,回答下列問(wèn)題:
(1)求本次抽樣調(diào)查的樣本容量;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)?jiān)谀愕陌嗬镒鲆豁?xiàng)有關(guān)師生關(guān)系的調(diào)查,分四個(gè)方面:①自由平等的師生關(guān)系②既注重師道尊嚴(yán),又注重平等的師生關(guān)系③傳統(tǒng)的尊師愛(ài)生的關(guān)系④不太協(xié)調(diào)的關(guān)系,請(qǐng)你統(tǒng)計(jì)出四個(gè)方面的人數(shù),回答以下問(wèn)題.
①列出表格,并作出相應(yīng)的統(tǒng)計(jì)圖.
②任取一名同學(xué),他與老師之間的關(guān)系是自由平等的師生關(guān)系,是哪一種事件?可能性約為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,點(diǎn)P(3a,a)是反比例函數(shù)y= (k>0)與⊙O的一個(gè)交點(diǎn),圖中陰影部分的面積為10π,則反比例函數(shù)的解析式為( )

A.y=
B.y=
C.y=
D.y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】

【發(fā)現(xiàn)】

如圖∠ACB=∠ADB=90°,那么點(diǎn)D在經(jīng)過(guò)A,B,C三點(diǎn)的圓上(如圖①)

【思考】

如圖②,如果∠ACB=∠ADB=a(a≠90°)(點(diǎn)C,D在AB的同側(cè)),那么點(diǎn)D還在經(jīng)過(guò)A,B,C三點(diǎn)的圓上嗎?

請(qǐng)證明點(diǎn)D也不在⊙O內(nèi).

【應(yīng)用】

利用【發(fā)現(xiàn)】和【思考】中的結(jié)論解決問(wèn)題:若四邊形ABCD中,AD∥BC,∠CAD=90°,點(diǎn)E在邊AB上,CE⊥DE.

(1)作∠ADF=∠AED,交CA的延長(zhǎng)線(xiàn)于點(diǎn)F(如圖④),求證:DF為Rt△ACD的外接圓的切線(xiàn);

(2)如圖⑤,點(diǎn)G在BC的延長(zhǎng)線(xiàn)上,∠BGE=∠BAC,已知sin∠AED=,AD=1,求DG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算y2(﹣xy32的結(jié)果是(  )
A.x3y10
B.x2y8
C.﹣x3y8
D.x4y12

查看答案和解析>>

同步練習(xí)冊(cè)答案