【題目】某中學(xué)為了解七年級學(xué)生最喜愛的球類運(yùn)動(dòng)情況,從中隨機(jī)抽取部分學(xué)生進(jìn)行調(diào)查統(tǒng)計(jì),調(diào)查項(xiàng)目為籃球、乒乓球、足球和排球(每個(gè)被抽查的學(xué)生必須選擇且只能選擇其中一個(gè)調(diào)查項(xiàng)目),對調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖:
根據(jù)以上統(tǒng)計(jì)圖提供的信息,回答下列問題:
(1)求本次抽樣調(diào)查的樣本容量;
(2)請補(bǔ)全條形統(tǒng)計(jì)圖.
【答案】
(1)解:16÷32%=50(人)
答:本次抽樣調(diào)查的樣本容量是50;
(2)解:50﹣16﹣10﹣4=10(人),如圖所示:
.
【解析】由部分百分比=樣本容量求出即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用總體、個(gè)體、樣本、樣本容量和扇形統(tǒng)計(jì)圖的相關(guān)知識(shí)可以得到問題的答案,需要掌握所要考察的全體對象叫總體,組成總體的每一個(gè)考察對象叫個(gè)體,被抽取的那部分個(gè)體組成總體的一個(gè)樣本,樣本中個(gè)體的數(shù)目叫這個(gè)樣本的容量(樣本容量沒有單位);能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】六一期間,某公園游戲場舉行“迎奧運(yùn)”活動(dòng).有一種游戲的規(guī)則是:在一個(gè)裝有6個(gè)紅球和若干個(gè)白球(每個(gè)球除顏色外其他相同)的袋中,隨機(jī)摸一個(gè)球,摸到一個(gè)紅球就得到一個(gè)奧運(yùn)福娃玩具.已知參加這種游戲活動(dòng)為40000人次,公園游戲場發(fā)放的福娃玩具為10000個(gè).
(1)求參加一次這種游戲活動(dòng)得到福娃玩具的概率;
(2)請你估計(jì)袋中白球接近多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某村耕地總面積為50公頃,且該村人均耕地面積y(單位:公頃/人)與總?cè)丝趚(單位:人)的函數(shù)圖象如圖所示,則下列說法正確的是( )
A.該村人均耕地面積隨總?cè)丝诘脑龆喽龆?/span>
B.該村人均耕地面積y與總?cè)丝趚成正比例
C.若該村人均耕地面積為2公頃,則總?cè)丝谟?00人
D.當(dāng)該村總?cè)丝跒?0人時(shí),人均耕地面積為1公頃
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某市八年級學(xué)生的肺活量,從中抽樣調(diào)查了500名學(xué)生的肺活量,這項(xiàng)調(diào)查中的樣本是_______,樣本容量是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
上課時(shí)李老師提出這樣一個(gè)問題:對于任意實(shí)數(shù)x,關(guān)于x的不等式x2﹣2x﹣1﹣a>0恒成立,求a的取值范圍.
小捷的思路是:原不等式等價(jià)于x2﹣2x﹣1>a,設(shè)函數(shù)y1=x2﹣2x﹣1,y2=a,畫出兩個(gè)函數(shù)的圖象的示意圖,于是原問題轉(zhuǎn)化為函數(shù)y1的圖象在y2的圖象上方時(shí)a的取值范圍.
請結(jié)合小捷的思路回答:
對于任意實(shí)數(shù)x,關(guān)于x的不等式x2﹣2x﹣1﹣a>0恒成立,則a的取值范圍是 .
參考小捷思考問題的方法,解決問題:
關(guān)于x的方程x﹣4=在0<a<4范圍內(nèi)有兩個(gè)解,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對于任意三點(diǎn)A,B,C的“矩面積”,給出如下定義:
“水平底”a:任意兩點(diǎn)橫坐標(biāo)差的最大值,“鉛垂高”h:任意兩點(diǎn)縱坐標(biāo)差的最大值,則“矩面積”S=ah.
例如:三點(diǎn)坐標(biāo)分別為A(1,2),B(﹣3,1),C(2,﹣2),則“水平底”a=5,“鉛垂高”h=4,“矩面積”S=ah=20.
(1)已知點(diǎn)A(1,2),B(﹣3,1),P(0,t).
①若A,B,P三點(diǎn)的“矩面積”為12,求點(diǎn)P的坐標(biāo);
②直接寫出A,B,P三點(diǎn)的“矩面積”的最小值.
(2)已知點(diǎn)E(4,0),F(0,2),M(m,4m),N(n, ),其中m>0,n>0.
①若E,F,M三點(diǎn)的“矩面積”為8,求m的取值范圍;
②直接寫出E,F,N三點(diǎn)的“矩面積”的最小值及對應(yīng)n的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com