【題目】已知將一副三角板(直角三角板和直角三角板)的兩個(gè)頂點(diǎn)重合于點(diǎn).

1)如圖1,將直角三角板繞點(diǎn)逆時(shí)針?lè)较蜣D(zhuǎn)動(dòng),當(dāng)恰好平分時(shí),的度數(shù)是 _.

2)如圖2,當(dāng)三角板擺放在內(nèi)部時(shí),作射線平分,射線平分,如果三角板內(nèi)繞點(diǎn)任意轉(zhuǎn)動(dòng),的度數(shù)是否發(fā)生變化?如果不變,求其值;如果變化,說(shuō)明理由.

3)當(dāng)三角板繞點(diǎn)繼續(xù)轉(zhuǎn)動(dòng)到如圖3所示的位置時(shí),作射線平分,射線平分,請(qǐng)你求出此時(shí)鈍角的度數(shù).

【答案】(1);(2)不變,;(3

【解析】

1)根據(jù)平分可得出∠BOD=COB,所以=90°COB,據(jù)此進(jìn)一步計(jì)算求解即可;

2)利用角平分線性質(zhì)結(jié)合進(jìn)一步計(jì)算求證即可;

3)利用角平分線性質(zhì)結(jié)合進(jìn)一步計(jì)算即可.

平分

∴∠BOD=COB=15°,

=90°COB=75°

故答案為:75°;

(2)不變,,

平分平分

根據(jù)圖中所示

(3) 由題意得:

平分平分,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1ABC中,∠C=90°AB的垂直平分線交AC于點(diǎn)D,連接BD. AC=2BC=1,則BCD的周長(zhǎng)為___________________.

2O為正方形ABCD的中心,ECD邊上一點(diǎn),FAD邊上一點(diǎn),且EDF的周長(zhǎng)等于AD的長(zhǎng).

①在圖2中求作EDF.(要求:尺規(guī)作圖,不寫(xiě)作法,保留作圖痕跡)

②在圖3中補(bǔ)全圖形,求∠EOF的度數(shù).

③若,則=_______________.

1 2 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知線段AB=(為常數(shù)),點(diǎn)C為直線AB上一點(diǎn),點(diǎn)P、Q分別在線段BC、AC上,且滿足CQ=2AQ,CP=2BP.

(1)如圖,當(dāng)點(diǎn)C恰好在線段AB中點(diǎn)時(shí),則PQ=_______(用含的代數(shù)式表示);

(2)若點(diǎn)C為直線AB上任一點(diǎn),則PQ長(zhǎng)度是否為常數(shù)?若是,請(qǐng)求出這個(gè)常數(shù);若不是,請(qǐng)說(shuō)明理由;

(3)若點(diǎn)C在點(diǎn)A左側(cè),同時(shí)點(diǎn)P在線段AB上(不與端點(diǎn)重合),請(qǐng)判斷2AP+CQ-2PQ1的大小關(guān)系,并說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是邊長(zhǎng)為4cm的等邊三角形,點(diǎn)P,Q分別從頂點(diǎn)A,B同時(shí)出發(fā),沿線段ABBC運(yùn)動(dòng),且它們的是速度都為1厘米/秒.當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒).

1)當(dāng)運(yùn)動(dòng)時(shí)間為t秒時(shí),AP的長(zhǎng)為   厘米,QC的長(zhǎng)為   厘米;(用含t的式子表示)

2)當(dāng)t為何值時(shí),PBQ是直角三角形?

3)連接AQ、CP,相交于點(diǎn)M,如圖2,則點(diǎn)P,Q在運(yùn)動(dòng)的過(guò)程中,∠CMQ會(huì)變化嗎?若變化,則說(shuō)明理由;若不變,請(qǐng)求出它的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊ABC邊長(zhǎng)為4,點(diǎn)P,Q分別是AB,BC邊上的動(dòng)點(diǎn),且AP =BQ= x,PQCR,則用含x的代數(shù)式表示PQCR的面積為______;當(dāng)PCAR時(shí), x =____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形OABC,點(diǎn)A,C分別在x軸,y軸的正半軸上,OA=4,OC=2.點(diǎn)Pm,0)是射線OA上的動(dòng)點(diǎn),EPC中點(diǎn),作OEAF,EFOAG,

1)寫(xiě)出點(diǎn)E,F的坐標(biāo)(用含m的代數(shù)式表示):E(_____,_____),F(______,_____).

2)當(dāng)線段EF取最小值時(shí),m的值為______;此時(shí)OEAF的周長(zhǎng)為______.

3)①當(dāng)OEAF是矩形時(shí),求m的值.

②將△OEF沿EF翻折到△OEF,若△OEF與△AEF重疊部分的面積為1時(shí),m的值為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2臺(tái)大收割機(jī)和5臺(tái)小收割機(jī)同時(shí)工作2 h共收割小麥3.6hm2,3臺(tái)大收割機(jī)和2臺(tái)小收割機(jī)同時(shí)工作5 h共收割小麥8 hm2.1臺(tái)大收割機(jī)和1臺(tái)小收割機(jī)每小時(shí)各收割小麥多少公頃?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校食堂廚房的桌子上整齊地?cái)[放著若干相同規(guī)格的碟子,碟子的個(gè)數(shù)與碟子的高度的關(guān)系如下表:

碟子的個(gè)數(shù)

碟子的高度(單位:cm

1

2

2

2+1.5

3

2+3

4

2+4.5

1)當(dāng)桌子上放有x(個(gè))碟子時(shí),請(qǐng)寫(xiě)出此時(shí)碟子的高度(用含x的式子表示);

2)分別從三個(gè)方向上看,其三視圖如上圖所示,廚房師傅想把它們整齊疊成一摞,求疊成一摞后的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線經(jīng)過(guò)點(diǎn),

1求直線的解析式;

2若直線與直線相交于點(diǎn)求點(diǎn)的坐標(biāo);

3根據(jù)圖象,直接寫(xiě)出關(guān)于的不等式的解集

查看答案和解析>>

同步練習(xí)冊(cè)答案