如圖,利用四邊形的不穩(wěn)定性改變矩形ABCD的形狀,得到□A1BCD1,若□A1BCD1的面積是矩形ABCD面積的一半,則∠ABA1的度數(shù)是
 
A.15°     B.30°     C.45°      D.60°
D

過A1作A1H⊥BC于H,
∵?A1BCD1的面積是矩形ABCD面積的一半,
∴AB×BC=2BC×A1H,
∴A1H=A1B,
∴∠A1BH=30°,
∴∠ABA1=90°-30°=60°,
故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在菱形ABCD中,∠BAD=80°,AB的垂直平分線交對(duì)角線AC于點(diǎn)F,E為垂足,連接DF.則∠CDF等于       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

正方形、正方形和正方形的位置如圖所示,點(diǎn)在線段
上,正方形的邊長(zhǎng)為4,則的面積為(  )
A.10  B.12C.14D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列各命題中,是真命題的是(   )
A.已知,則
B.若,則
C.一條直線截另外兩條直線所得到的同位角相等
D.兩條對(duì)角線相等的梯形是等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,矩形中,,,,,則( )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在菱形ABCD中,對(duì)角線AC,BD分別等于8和6,將BD沿CB的方向平移,使D與A重合,B與CB延長(zhǎng)線上的點(diǎn)E重合,則四邊形AECD的面積等于      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,梯形ABCD中,AB∥CD,∠DAB=90°,F(xiàn)是BC的中點(diǎn),
連接DF并延長(zhǎng)DF交AB于點(diǎn)E,連接AF。

小題1:(1)求證:△CDF≌△BEF;
小題2:(2)若∠E=28°,求∠AFD的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知正方形ABCD,點(diǎn)B與坐標(biāo)原點(diǎn)O重合,BC、BA分別在x軸和y軸上,對(duì)角線BD在射線OM上,點(diǎn)E在y軸上,OA、OE的長(zhǎng)分別是2和6,正方形ABCD以每秒2個(gè)單位長(zhǎng)度的速度沿射線OM(BD始終在射線OM上)方向移動(dòng),同時(shí)點(diǎn)P從點(diǎn)C以每秒1個(gè)單位長(zhǎng)度的速度沿折線CD—DA向點(diǎn)A移動(dòng),當(dāng)一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止移動(dòng),設(shè)移動(dòng)時(shí)間為t秒
小題1:當(dāng)0≤t≤2時(shí),直接寫出點(diǎn)P的坐標(biāo)(用t的代數(shù)式表示).
小題2:當(dāng)四邊形EABO是等腰梯形時(shí),①求t的值;②求證:OA=ED
小題3:是否存在這樣的t值,使EP//x軸,若有,求出點(diǎn)P的坐標(biāo);若沒有,說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,把一長(zhǎng)方形紙片ABCD沿EG折疊后,點(diǎn)A、B分別落在A’、B’的位置上,EA’與BC相交于點(diǎn)F。已知,則的度數(shù)是

A、50°
B、80°
C、65°
D、40°

查看答案和解析>>

同步練習(xí)冊(cè)答案