【題目】某中學(xué)初二年級(jí)抽取部分學(xué)生進(jìn)行跳繩測試,并規(guī)定:每分鐘跳90次以下的為不及格;每分鐘跳90~99次的為及格;每分鐘100~109次的為中等;每分鐘110~119次的為良好;每分鐘120次及以上的為優(yōu)秀。測試結(jié)果整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖。請根據(jù)圖中信息,解答下列各題:

(1)參加這次跳繩測試的共有人;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,“中等”部分所對的圓心角的度數(shù)是;
(4)如果該校初二年級(jí)的總?cè)藬?shù)是480人,根據(jù)此統(tǒng)計(jì)數(shù)據(jù),請你估算出該校初二年級(jí)跳繩成績?yōu)椤皟?yōu)秀”的人數(shù)。

【答案】
(1)50
(2)

由(1)的優(yōu)秀的人數(shù)為:50-3-7-10-20=10(人),
補(bǔ)圖如下:


(3)72°
(4)

480×=96(人).


【解析】解:(1)參加這次跳繩測試的共有:20÷40%=50(人);
故答案為:50;
(2)∵“中等”部分所對應(yīng)的人數(shù)是10人,
∴10÷50×360°=72°,
∴“中等”部分所對應(yīng)的圓心角的度數(shù)為72°.
故答案為72°.
(1)用良好的人數(shù)÷百分比=參加這次跳繩測試的人數(shù);
(2)總?cè)藬?shù)-各部分的人數(shù)=優(yōu)秀的人數(shù);
(3)求出“中等”部分所占百分比,乘以360°;
(4)求出“優(yōu)秀”部分所占百分比,乘以480.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形A1B1C1D1、A2B2C2D2……按照如圖所示的方式放置,點(diǎn)A1、A2、A3、…和點(diǎn)C1、C2、C3、…分別在直線y=kx+b(k>0)和x軸上,已知B1(1,1),B2(3,2),B3(7,4)則B2018的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形 ABCD 中,AB=AD,AC=5,DAB=DCB=90°, 則四邊形 ABCD 的面積為(

A. 15 B. 14.5 C. 13 D. 12.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=8,BC=12,點(diǎn)E是BC的中點(diǎn),連接AE,將△ABE沿AE折疊,點(diǎn)B落在點(diǎn)F處,連接FC,則sin∠ECF=(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖放置的△OAB1 , △B1A1B2 , △B2A2B3 , …都是邊長為2的等邊三角形,點(diǎn)A在y軸上,點(diǎn)O,B1 , B2 , B3…都在直線l上,則點(diǎn)B2017的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD頂點(diǎn)A、B在x軸上,點(diǎn)D在y軸上,函數(shù)y= (x>0)的圖象經(jīng)過點(diǎn)C(2,3),直線AD交雙曲線于點(diǎn)E,并且EB⊥x軸,CD⊥y軸,EB與CD交于點(diǎn)F.

(1)若EB= OD,求點(diǎn)E的坐標(biāo);
(2)若四邊形ABCD為平行四邊形,求過A、D兩點(diǎn)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2015本溪,第9題,3分)如圖,在平面直角坐標(biāo)系中,直線ABx軸交于點(diǎn)A(﹣2,0),與x軸夾角為30°,將△ABO沿直線AB翻折,點(diǎn)O的對應(yīng)點(diǎn)C恰好落在雙曲線)上,則k的值為( 。

A. 4 B. ﹣2 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線與雙曲線交于兩點(diǎn),且點(diǎn)的橫坐標(biāo)為

1)求的值;

2)若雙曲線上一點(diǎn)的縱坐標(biāo)為8,求的面積;

3)過原點(diǎn)的另一條直線交雙曲線兩點(diǎn)(點(diǎn)在第一象限),若由點(diǎn)為頂點(diǎn)組成的四邊形面積為,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在地面上有兩根等長的立柱AB,CD,它們之間懸掛了一根拋物線形狀的繩子,按照圖中的直角坐標(biāo)系,這條繩子可以用y= x2 x+3表示
(1)求這條繩子最低點(diǎn)離地面的距離;
(2)現(xiàn)由于實(shí)際需要,要在兩根立柱之間再加一根立柱EF對繩子進(jìn)行支撐(如圖②),已知立柱EF到AB距離為3m,兩旁的繩子也是拋物線形狀,且立柱EF左側(cè)繩子的最低點(diǎn)到EF的距離為1m,到地面的距離為1.8m,求立柱EF的長.

查看答案和解析>>

同步練習(xí)冊答案