【題目】地和地之間的鐵路交通設有特快列車和普通列車兩種車次,某天一輛普通列車從A地出發(fā)勻速駛向地,同時另一輛特快列車從地出發(fā)勻速駛向地,兩車與地的距離(千米)與行駛時間(時)的函數(shù)關系如圖所示.
(1)地到地的距離為 千米,普通列車到達地所用時間為 小時;
(2)求特快列車與地的距離與的函數(shù)關系式;
(3)在、兩地之間有一座鐵路橋,特快列車到鐵路橋后又行駛小時與普通列車相遇,直接寫出地與鐵路橋之間的距離 .
【答案】(1)千米,7.5小時;(2);(3)千米
【解析】
(1)根據(jù)函數(shù)圖象可以解答本題;
(2)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以求得特快列車與地的距離s與t之間的函數(shù)關系式;
(3)根據(jù)圖象可知兩車相遇時間為2.5小時,從而可以得到特快列車到橋用的時間為2小時,然后根據(jù)(2)中的函數(shù)解析式即可解答本題.
(1) 由圖象可得,地到地的距離為千米,
普通列車到達地所用時間為:(小時),
(2)設特快列車與地的距離與之間的函數(shù)關系式是,
已知點(0, 450),(2.5,150)在直線,
∴把點(0, 450)與(2.5,150)代入函數(shù)解析式得
,解得,
即特快列車與地的距離與之間的函數(shù)關系式是;
(3)設地與鐵路橋之間的距離是千米,
,
答:地與鐵路橋之間的距離是千米.
科目:初中數(shù)學 來源: 題型:
【題目】A、B兩輛汽車同時從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時間,如圖,L1,L2分別表示兩輛汽車的s與t的關系.
(1)L1表示哪輛汽車到甲地的距離與行駛時間的關系?
(2)汽車B的速度是多少?
(3)求L1,L2分別表示的兩輛汽車的s與t的關系式.
(4)2小時后,兩車相距多少千米?
(5)行駛多長時間后,A、B兩車相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點D在拋物線上,DE∥y軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0<t<4),矩形DFEG的周長為p,求p與t的函數(shù)關系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若△A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是水滴進玻璃容器的示意圖(滴水速度不變),圖2是容器中水高度隨滴水時間變化的圖象.
給出下列對應:(1):(a)--(e),(2):(b)--(f),(3):(c)--(h),(4):(d)--(g),其中正確的是( 。
A.(1)和(2)B.(2)和(3)C.(1)和(3)D.(3)和(4)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,防洪大堤的橫斷面是梯形,背水坡AB的坡比i=1:,且AB=30m,李亮同學在大堤上A點處用高1.5m的測量儀測出高壓電線桿CD頂端D的仰角為30°,己知地面BC寬30m,求高壓電線桿CD的高度(結(jié)果保留三個有效數(shù)字,≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了增強學生體質(zhì),決定開設以下體育課外活動項目:A:籃球 B:乒乓球C:羽毛球 D:足球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:
(1)這次被調(diào)查的學生共有 人;
(2)請你將條形統(tǒng)計圖(2)補充完整;
(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長方形紙片ABCD中,AB=3,AD=9,折疊紙片ABCD,使頂點C落在邊AD上的點G處,折痕分別交邊AD、BC于點E、F,則△GEF的面積最大值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】雜技團進行雜技表演,演員從蹺蹺板右端A處彈跳到人梯頂端椅子B處,其身體(看成一點)的路線是拋物線的一部分,如圖
(1)求演員彈跳離地面的最大高度;
(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳點A的水平距離是4米,問這次表演是否成功?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com